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• Quantify consumer preferences
• Preference data is collected
• Respondents are presented sets of alternatives (choice sets) and asked to choose
• Example: a customer responding whether they prefer to buy product A, B or C
• Models assume a latent utility function used to derive the probability of each 

respondent making each decision
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● Many products and services can be described as mixtures of ingredients
● Examples:

○ components of a mobility budget such as car with fuel card and public transport card
○ ingredients used to make a sports drink
○ ingredients used to make a cocktail
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• In mixture experiments, products are expressed as combinations of 
proportions of ingredients

• The researchers' interest is generally in one or more characteristics of the 
mixture

• For us, the characteristic of interest is the preference of respondents
• Choice experiments are ideal to collect data for quantifying and modeling 

preferences for mixtures
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• First example by Courcoux and Séménou (1997)
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Choice experiments with mixtures

• First example by Courcoux and Séménou (1997)
• Preferences for cocktails involving different proportions of mango juice, lime 

juice, and blackcurrant syrup
• Experimental data involved the responses of sixty people, each making eight 

pairwise comparisons of different cocktails
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• Discrete choice experiments are expensive, cumbersome and 
time-consuming

• Efficient experimental designs are required so that the experiments provide 
reliable information

• Optimal design of experiments is the branch of statistics that deals with the 
construction of efficient experimental designs
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Optimal choice experiments with mixtures

• Little research has been done concerning the optimal design of choice 
experiments with mixtures

• D-optimal experimental designs are good if one wants low-variance 
estimators

• In experiments with mixtures, one wants to optimize the composition of the 
mixture to maximize consumer preference

• Precise predictions are crucial, hence I-optimal designs are more suitable
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 Models for data from mixture experiments

• Models assume two or more ingredients and a response variable that 
depends only on the relative proportions of the ingredients in the mixture

• Each mixture is described as a combination of q ingredient proportions, with 
the constraint that these proportions sum up to one

• Dedicated models are needed to avoid perfect collinearity
• Special-cubic Scheffé model:
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Multinomial logit model for choice data
• A respondent faces S choice sets involving J alternatives each
• Respondent chooses the alternative that has the highest perceived utility

• The probability that a respondent chooses alternative j ∈ {1, ..., J} in choice 
set s is



• We assume vector       contains the q ingredient proportions and that                
represents the model expansion of these proportions
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• We assume vector       contains the q ingredient proportions and that                
represents the model expansion of these proportions

• Perceived utility modeled as

Model for choice data concerning mixtures
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• Bayesian I-optimality criterion

• Numerical approximation to Bayesian I-optimality criterion

• I-optimality criterion
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• Ruseckaite et al. revisited an experiment by Courcoux and Semenou in which 
respondents tasted fruit cocktails involving mango juice, blackcurrant syrup, and 
lemon juice

• 60 consumers were asked to taste different pairs of seven fruit cocktails 
• Ruseckaite et al. obtained a prior distribution for parameter vector β in a 

special-cubic Scheffé model
• We used the same prior distribution to compute Bayesian D- and I-optimal 

designs using a coordinate-exchange algorithm
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Future work
• Add process variables

• Extend the work to other classes of models for data from mixture experiments

• Models that take into account possible presence of consumer heterogeneity

Contributions
• Embedded an efficient definition for I-optimal designs for choice experiments involving mixtures in a 

coordinate-exchange algorithm

• Demonstrated that the I-optimal designs perform better than their D-optimal counterparts

• Created an accessible and open-source R package with our algorithms

Conclusions
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