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Discrete choice experiments

- Quantify consumer preferences

- Preference data is collected

- Respondents are presented sets of alternatives (choice sets) and asked to choose

- Example: a customer responding whether they prefer to buy product A, B or C

- Models assume a latent utility function used to derive the probability of each
respondent making each decision
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Mixtures

o Many products and services can be described as mixtures of ingredients

e Examples:
o components of a mobility budget such as car with fuel card and public transport card
o ingredients used to make a sports drink
o ingredients used to make a cocktall
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Mixtures

- In mixture experiments, products are expressed as combinations of
proportions of ingredients

- The researchers' interest is generally in one or more characteristics of the
mixture

- For us, the characteristic of interest is the preference of respondents

.- Choice experiments are ideal to collect data for quantifying and modeling
preferences for mixtures
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Choice experiments with mixtures

- First example by Courcoux and Séménou (1997)

- Preferences for cocktails involving different proportions of mango juice, lime
juice, and blackcurrant syrup

- Experimental data involved the responses of sixty people, each making eight
pairwise comparisons of different cocktails

This work

Choice Mixture
models models
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Designing choice experiments with mixtures

- Discrete choice experiments are expensive, cumbersome and

time-consuming
- Efficient experimental designs are required so that the experiments provide

reliable information
- Optimal design of experiments is the branch of statistics that deals with the

construction of efficient experimental designs
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Optimal choice experiments with mixtures

- Little research has been done concerning the optimal design of choice
experiments with mixtures

- D-optimal experimental designs are good if one wants low-variance
estimators

- In experiments with mixtures, one wants to optimize the composition of the
mixture to maximize consumer preference

- Precise predictions are crucial, hence |-optimal designs are more suitable
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Models for data from mixture experiments

- Models assume two or more ingredients and a response variable that
depends only on the relative proportions of the ingredients in the mixture

- Each mixture is described as a combination of g ingredient proportions, with
the constraint that these proportions sum up to one

- Dedicated models are needed to avoid perfect collinearity

. Special-cubic Scheffé model:

¥ = Z,Bzxz+> )j ,Bzgxzwg+> > Z Bijk ik + €
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Multinomial logit model for choice data

- Arespondent faces S choice sets involving J alternatives each
- Respondent chooses the alternative that has the highest perceived utility

CarA CarB
BRAND BMW Mercedes
MILEAGE | 2 miles per gallon | 10 miles per gallon |
COLOR British racing green | Mettalic Green |

PRICE $20,000 $100,000

which do you prefer € £

- The probability that a respondent chooses alternative j € {7, ..., J} in choice
setsis

e[ (@
’ Z;I=1 exp [f T(mts)ﬁ]
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Model for choice data concerning mixtures

- We assume vector x,; contains the g ingredient proportions and that f(z;s)
represents the model expansion of these proportions
- Perceived utility modeled as

Ugs = f (mjs),@ Zﬂz Lijs + Z Z ,szijsxkgs T Z Z Z ,szlxzysxk_ysxlgs -+ €js

1=1 k=1i+1 i=1 k=i+1l=k+1
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D-optimal designs

- D-optimality criterion
D = log (det ([174(X,8))] )

- Bayesian D-optimality criterion

1

Dy = log ( / [det (17X, 8))] w(ﬂ)dﬂ)

- Numerical approximation to Bayesian D-optimality criterion

Dp ~ log (% zf: [det (I—l(x,ﬂ“)))] )
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- |-optimality criterion
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l-optimal designs

- |-optimality criterion
I=tr[I"(X,B)W,]

- Bayesian |-optimality criterion
Ip = / tr [I71(X,B)W.]| n(B)dB
- Numerical approximation to Bayesian I-optimality criterion
R
~ 1 -1 (i)
In ~ R;tr [I (X, )WU]
W= [ £@i)f" @:)de.
X
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Cocktalil preferences

- Ruseckaite et al. revisited an experiment by Courcoux and Semenou in which
respondents tasted fruit cocktails involving mango juice, blackcurrant syrup, and

lemon juice
- 60 consumers were asked to taste different pairs of seven fruit cocktails

- Ruseckaite et al. obtained a prior distribution for parameter vector 8 in a

special-cubic Scheffé model
- We used the same prior distribution to compute Bayesian D- and |-optimal

designs using a coordinate-exchange algorithm



Cocktalil preferences
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Cocktalil preferences

Prediction variance
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- Ruseckaite et al.
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Conclusions

Contributions

« Embedded an efficient definition for |-optimal designs for choice experiments involving mixtures in a
coordinate-exchange algorithm

« Demonstrated that the I-optimal designs perform better than their D-optimal counterparts

« Created an accessible and open-source R package with our algorithms

Future work
« Add process variables
» Extend the work to other classes of models for data from mixture experiments

* Models that take into account possible presence of consumer heterogeneity
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