KULEUVEN

Bayesian D- and I-optimal designs for choice experiments involving mixtures and process variables

Mario Becerra with Peter Goos

May 25th, 2022
International Choice Modelling Conference
Reykjavik, Iceland

Outline

1. Choice modeling and choice experiments
2. Mixture experiments
3. Combining choice models and mixture models
4. Optimality criteria for choice experiments
5. Results

Choice modeling and choice experiments

Discrete choice experiments

Discrete choice experiments

- Quantify consumer preferences

Discrete choice experiments

- Quantify consumer preferences
- Preference data is collected

Discrete choice experiments

- Quantify consumer preferences
- Preference data is collected
- Respondents are presented sets of alternatives (choice sets) and asked to choose

Discrete choice experiments

- Quantify consumer preferences
- Preference data is collected
- Respondents are presented sets of alternatives (choice sets) and asked to choose
- Example: choosing to buy product A, B or C

Discrete choice experiments

- Quantify consumer preferences
- Preference data is collected
- Respondents are presented sets of alternatives (choice sets) and asked to choose
- Example: choosing to buy product A, B or C
- Latent utility function -> probability of making each decision

Mixture experiments

Mixtures

Mixtures

- Many products and services can be described as mixtures of ingredients

Mixtures

- Many products and services can be described as mixtures of ingredients
- Examples:
- wheat varieties in bread

Mixtures

- Many products and services can be described as mixtures of ingredients
- Examples:
- wheat varieties in bread
- ingredients used to make a cocktail

Mixtures

- Many products and services can be described as mixtures of ingredients
- Examples:
- wheat varieties in bread
- ingredients used to make a cocktail
- types of fish used to make a fish patty

Mixtures

- In mixture experiments, products are expressed as combinations of proportions of ingredients

Mixtures

- In mixture experiments, products are expressed as combinations of proportions of ingredients
- The researchers' interest is generally in one or more characteristics of the mixture

Mixtures

- In mixture experiments, products are expressed as combinations of proportions of ingredients
- The researchers' interest is generally in one or more characteristics of the mixture
- In this work, the characteristic of interest is the preference of respondents

Mixtures

- In mixture experiments, products are expressed as combinations of proportions of ingredients
- The researchers' interest is generally in one or more characteristics of the mixture
- In this work, the characteristic of interest is the preference of respondents
- Choice experiments are ideal to collect data for quantifying and modeling preferences for mixtures

Combining choice models and mixture models

Choice experiments with mixtures

Choice experiments with mixtures

- First example by Courcoux and Séménou (1997), preferences for cocktails

Choice experiments with mixtures

- First example by Courcoux and Séménou (1997), preferences for cocktails
- mango juice
- lemon juice
- blackcurrant syrup :

Choice experiments with mixtures

- First example by Courcoux and Séménou (1997), preferences for cocktails
- mango juice
- lemon juice
- blackcurrant syrup :
- 60 people, each making 8 pairwise comparisons

Designing choice experiments with mixtures

Designing choice experiments with mixtures

- Experiments are expensive, cumbersome and time-consuming

Designing choice experiments with mixtures

- Experiments are expensive, cumbersome and time-consuming
- Efficient experimental designs \rightarrow reliable information

Designing choice experiments with mixtures

- Experiments are expensive, cumbersome and time-consuming
- Efficient experimental designs \rightarrow reliable information
- Optimal design of experiments: the branch of statistics that deals with the construction of efficient experimental designs

Optimality criteria for choice experiments

Optimal choice experiments with mixtures

- D-optimal experimental designs \rightarrow low-variance estimators

Optimal choice experiments with mixtures

- D-optimal experimental designs \rightarrow low-variance estimators
- We want to have a mixture that maximizes consumer preference

Optimal choice experiments with mixtures

- D-optimal experimental designs \rightarrow low-variance estimators
- We want to have a mixture that maximizes consumer preference
- Precise predictions are crucial

Optimal choice experiments with mixtures

- D-optimal experimental designs \rightarrow low-variance estimators
- We want to have a mixture that maximizes consumer preference
- Precise predictions are crucial
- I-optimal experimental designs \rightarrow low-variance prediction

Models for data from mixture experiments

Models for data from mixture experiments

- Mixture models assume two or more ingredients and a response variable that depends only on the relative proportions of the ingredients in the mixture

Models for data from mixture experiments

- Mixture models assume two or more ingredients and a response variable that depends only on the relative proportions of the ingredients in the mixture
- Each mixture is described as a combination of q ingredient proportions (0 to 1)

Models for data from mixture experiments

- Mixture models assume two or more ingredients and a response variable that depends only on the relative proportions of the ingredients in the mixture
- Each mixture is described as a combination of q ingredient proportions (0 to 1)
- Constraint: proportions sum up to one

Models for data from mixture experiments

- Mixture models assume two or more ingredients and a response variable that depends only on the relative proportions of the ingredients in the mixture
- Each mixture is described as a combination of q ingredient proportions (0 to 1)
- Constraint: proportions sum up to one \rightarrow perfect collinearity

Models for data from mixture experiments

- Mixture models assume two or more ingredients and a response variable that depends only on the relative proportions of the ingredients in the mixture
- Each mixture is described as a combination of q ingredient proportions (0 to 1)
- Constraint: proportions sum up to one \rightarrow perfect collinearity
- Special-cubic Scheffé model:

$$
Y=\sum_{i=1}^{q} \beta_{i} x_{i}+\sum_{i=1}^{q-1} \sum_{j=i+1}^{q} \beta_{i j} x_{i} x_{j}+\sum_{i=1}^{q-2} \sum_{j=i+1}^{q-1} \sum_{k=j+1}^{q} \beta_{i j k} x_{i} x_{j} x_{k}+\varepsilon
$$

Including process variables

Including process variables

- The preference for a mixture may depend on other characteristics

Including process variables

- The preference for a mixture may depend on other characteristics
- Additional variables \rightarrow process variables

Including process variables

- The preference for a mixture may depend on other characteristics
- Additional variables \rightarrow process variables
- Second-order Scheffé model

Including process variables

- The preference for a mixture may depend on other characteristics
- Additional variables \rightarrow process variables
- Second-order Scheffé model

$$
Y=\sum_{k=1}^{q} \gamma_{k}^{0} x_{k}+\sum_{k=1}^{q-1} \sum_{l=k+1}^{q} \gamma_{k l}^{0} x_{k} x_{l}+\sum_{i=1}^{r} \sum_{k=1}^{q} \gamma_{k}^{i} x_{k} z_{i}+\sum_{i=1}^{r-1} \sum_{j=i+1}^{r} \alpha_{i j} z_{i} z_{j}+\sum_{i=1}^{r} \alpha_{i} z_{i}^{2}+\varepsilon
$$

Multinomial logit model for choice data

Multinomial logit model for choice data

- A respondent faces S choice sets involving J alternatives each

Multinomial logit model for choice data

- A respondent faces S choice sets involving J alternatives each
- Respondent chooses the alternative that has the highest perceived utility

Multinomial logit model for choice data

- A respondent faces S choice sets involving J alternatives each
- Respondent chooses the alternative that has the highest perceived utility
- The probability that a respondent chooses alternative $j \in\{1, \ldots, J\}$ in choice set s is

$$
p_{j s}=\frac{\exp \left[\boldsymbol{f}^{T}\left(\boldsymbol{x}_{j s}\right) \boldsymbol{\beta}\right]}{\sum_{t=1}^{J} \exp \left[\boldsymbol{f}^{T}\left(\boldsymbol{x}_{t s}\right) \boldsymbol{\beta}\right]}
$$

Model for choice data concerning mixtures

- We assume vector $\boldsymbol{x}_{j s}$ contains the q ingredient proportions and r process variables

Model for choice data concerning mixtures

- We assume vector $\boldsymbol{x}_{j s}$ contains the q ingredient proportions and r process variables
- Perceived utility modeled as

$$
\begin{aligned}
u_{j s}= & \boldsymbol{f}\left(\boldsymbol{x}_{j s}\right)^{T} \boldsymbol{\beta} \\
= & \sum_{i=1}^{q-1} \gamma_{i}^{0 *} x_{i j s}+\sum_{i=1}^{q-1} \sum_{k=i+1}^{q} \gamma_{i k}^{0} x_{i j s} x_{k j s}+\sum_{i=1}^{r} \sum_{k=1}^{q} \gamma_{k}^{i} x_{k j s} z_{i j s}+ \\
& \sum_{i=1}^{r-1} \sum_{k=i+1}^{r} \alpha_{i k} z_{i j s} z_{k j s}+\sum_{i=1}^{r} \alpha_{i} z_{i j s}^{2}
\end{aligned}
$$

D-optimal designs

D-optimal designs

- D-optimality criterion

$$
\mathcal{D}=\operatorname{det}\left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta})\right)
$$

D-optimal designs

- D-optimality criterion

$$
\mathcal{D}=\operatorname{det}\left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta})\right) \longrightarrow \text { prior distribution } \pi(\boldsymbol{\beta})
$$

D-optimal designs

- D-optimality criterion

$$
\mathcal{D}=\operatorname{det}\left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta})\right)
$$

- Bayesian D-optimality criterion

$$
\mathcal{D}_{B}=\int_{\mathbb{R}^{m}} \operatorname{det}\left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta})\right) \pi(\boldsymbol{\beta}) d \boldsymbol{\beta}
$$

D-optimal designs

- D-optimality criterion

$$
\mathcal{D}=\operatorname{det}\left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta})\right)
$$

- Bayesian D-optimality criterion

$$
\mathcal{D}_{B}=\int_{\mathbb{R}^{m}} \operatorname{det}\left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta})\right) \pi(\boldsymbol{\beta}) d \boldsymbol{\beta}
$$

- Numerical approximation to Bayesian D-optimality criterion

$$
\mathcal{D}_{B} \approx \frac{1}{R} \sum_{i=1}^{R} \operatorname{det}\left(\boldsymbol{I}^{-1}\left(\boldsymbol{X}, \boldsymbol{\beta}^{(i)}\right)\right)
$$

I-optimal designs

I-optimal designs

- I-optimality criterion

$$
\mathcal{I}=\int_{\chi} \boldsymbol{f}^{T}\left(\boldsymbol{x}_{j s}\right) \boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}) \boldsymbol{f}\left(\boldsymbol{x}_{j s}\right) d \boldsymbol{x}_{j s}
$$

I-optimal designs

- I-optimality criterion

$$
\begin{aligned}
\mathcal{I} & =\int_{\chi} \boldsymbol{f}^{T}\left(\boldsymbol{x}_{j s}\right) \boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}) \boldsymbol{f}\left(\boldsymbol{x}_{j s}\right) d \boldsymbol{x}_{j s} \\
& =\operatorname{tr}\left[\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}) \boldsymbol{W}_{u}\right]
\end{aligned}
$$

$$
\boldsymbol{W}_{u}=\int_{\chi} \boldsymbol{f}\left(\boldsymbol{x}_{j s}\right) \boldsymbol{f}^{T}\left(\boldsymbol{x}_{j s}\right) d \boldsymbol{x}_{j s}
$$

I-optimal designs

- I-optimality criterion

$$
\begin{aligned}
\mathcal{I} & =\int_{\chi} \boldsymbol{f}^{T}\left(\boldsymbol{x}_{j s}\right) \boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}) \boldsymbol{f}\left(\boldsymbol{x}_{j s}\right) d \boldsymbol{x}_{j s} \\
& =\operatorname{tr}\left[\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}) \boldsymbol{W}_{u}\right]
\end{aligned}
$$

- Bayesian I-optimality criterion

$$
\mathcal{I}_{B}=\int_{\mathbb{R}^{m}} \operatorname{tr}\left[\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}) \boldsymbol{W}_{u}\right] \pi(\boldsymbol{\beta}) d \boldsymbol{\beta}
$$

$$
\boldsymbol{W}_{u}=\int_{\chi} \boldsymbol{f}\left(\boldsymbol{x}_{j s}\right) \boldsymbol{f}^{T}\left(\boldsymbol{x}_{j s}\right) d \boldsymbol{x}_{j s}
$$

I-optimal designs

- I-optimality criterion

$$
\begin{aligned}
\mathcal{I} & =\int_{\chi} \boldsymbol{f}^{T}\left(\boldsymbol{x}_{j s}\right) \boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}) \boldsymbol{f}\left(\boldsymbol{x}_{j s}\right) d \boldsymbol{x}_{j s} \\
& =\operatorname{tr}\left[\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}) \boldsymbol{W}_{u}\right]
\end{aligned}
$$

- Bayesian I-optimality criterion

$$
\mathcal{I}_{B}=\int_{\mathbb{R}^{m}} \operatorname{tr}\left[\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}) \boldsymbol{W}_{u}\right] \pi(\boldsymbol{\beta}) d \boldsymbol{\beta}
$$

- Numerical approximation to Bayesian I-optimality criterion

$$
\mathcal{I}_{B} \approx \frac{1}{R} \sum_{i=1}^{R} \operatorname{tr}\left[\boldsymbol{I}^{-1}\left(\boldsymbol{X}, \boldsymbol{\beta}^{(i)}\right) \boldsymbol{W}_{u}\right]
$$

$$
\boldsymbol{W}_{u}=\int_{\chi} \boldsymbol{f}\left(\boldsymbol{x}_{j s}\right) \boldsymbol{f}^{T}\left(\boldsymbol{x}_{j s}\right) d \boldsymbol{x}_{j s}
$$

Results

Cocktail preferences

Cocktail preferences

- Original experiment by Courcoux and Semenou

Cocktail preferences

- Original experiment by Courcoux and Semenou
- September 2019: students from KU Leuven replicated the experiment with 35 respondents

Cocktail preferences

- Original experiment by Courcoux and Semenou
- September 2019: students from KU Leuven replicated the experiment with 35 respondents
- Each respondent tasted 4 choice sets of size 2

Cocktail preferences

- Original experiment by Courcoux and Semenou
- September 2019: students from KU Leuven replicated the experiment with 35 respondents
- Each respondent tasted 4 choice sets of size 2
- Simulated responses for temperature (process variable)

Cocktail preferences

- Original experiment by Courcoux and Semenou
- September 2019: students from KU Leuven replicated the experiment with 35 respondents
- Each respondent tasted 4 choice sets of size 2
- Simulated responses for temperature (process variable)
- Prior distribution for parameter vector $\boldsymbol{\beta}$ in a second-order Scheffé model and MNL model for Bayesian D- and I-optimal designs

Cocktail preferences

Cocktail preferences

Temperature

Bayesian D-optimal design

Cocktail preferences

Temperature

Cocktail preferences

Bayesian D-optimal design

Bayesian l-optimal design

Cocktail preferences

Fish patty experiment

Fish patty experiment

- Experiment from the 1980s by Cornell

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead
- croaker

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead
- croaker

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead
- croaker

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead
- croaker
- Subjected to different processing conditions:

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead
- croaker
- Subjected to different processing conditions:
- oven cooking temperature (375 or 425 degrees Fahrenheit)

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead
- croaker
- Subjected to different processing conditions:
- oven cooking temperature (375 or 425 degrees Fahrenheit)
- oven cooking time (25 or 40 minutes)

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead
- croaker
- Subjected to different processing conditions:
- oven cooking temperature (375 or 425 degrees Fahrenheit)
- oven cooking time (25 or 40 minutes)
- deep fat frying time (25 or 40 seconds)

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead
- croaker
- Subjected to different processing conditions:
- oven cooking temperature (375 or 425 degrees Fahrenheit)
- oven cooking time (25 or 40 minutes)
- deep fat frying time (25 or 40 seconds)
- Assuming firmness is proportional to utility

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead
- croaker
- Subjected to different processing conditions:
- oven cooking temperature (375 or 425 degrees Fahrenheit)
- oven cooking time (25 or 40 minutes)
- deep fat frying time (25 or 40 seconds)
- Assuming firmness is proportional to utility
- Point estimates with 3 levels of uncertainty controlled by к parameter

Fish patty experiment

D-optimal

I-optimal

$$
\begin{aligned}
& \text { (20: }
\end{aligned}
$$

10

Fish patty experiment

Final remarks

Final remarks

Contributions

- Developed the theory for choice experiments involving mixtures and process variables

Final remarks

Contributions

- Developed the theory for choice experiments involving mixtures and process variables
- Implemented the theory in a coordinate-exchange algorithm

Final remarks

Contributions

- Developed the theory for choice experiments involving mixtures and process variables
- Implemented the theory in a coordinate-exchange algorithm
- Created an open-source R package with our algorithms (https://github.com/mariobecerra/opdesmixr)

Final remarks

Contributions

- Developed the theory for choice experiments involving mixtures and process variables
- Implemented the theory in a coordinate-exchange algorithm
- Created an open-source R package with our algorithms (https://github.com/mariobecerra/opdesmixr)
- Demonstrated that the I-optimal designs perform better than their D-optimal counterparts

Final remarks

Contributions

- Developed the theory for choice experiments involving mixtures and process variables
- Implemented the theory in a coordinate-exchange algorithm
- Created an open-source R package with our algorithms (https://github.com/mariobecerra/opdesmixr)
- Demonstrated that the I-optimal designs perform better than their D-optimal counterparts

Future work

- Extending the algorithm to find designs with an upper bound on the number of distinct mixtures and/or an upper bound on the number of distinct choice sets

Final remarks

Contributions

- Developed the theory for choice experiments involving mixtures and process variables
- Implemented the theory in a coordinate-exchange algorithm
- Created an open-source R package with our algorithms (https://github.com/mariobecerra/opdesmixr)
- Demonstrated that the l-optimal designs perform better than their D-optimal counterparts

Future work

- Extending the algorithm to find designs with an upper bound on the number of distinct mixtures and/or an upper bound on the number of distinct choice sets
- Models that take into account possible presence of consumer heterogeneity

More information

- Mario Becerra and Peter Goos. Bayesian l-optimal designs for choice experiments with mixtures. Chemometrics and Intelligent Laboratory Systems 217 (2021): 104395. DOI: 10.1016/j.chemolab.2021.104395
- Mario Becerra's website (with links to paper, R package, and code to reproduce the paper): mariobecerra.github.io/

Thank you

Extra: Cocktail preferences

Extra: Fish patty experiment

Extra: Optimal design criteria

- D-optimal designs: low-variance estimators
- I-optimal designs: low-variance predictions
- Information matrix of multinomial logit model: $\boldsymbol{I}(\boldsymbol{X}, \boldsymbol{\beta})=\sum_{s=1}^{S} \boldsymbol{X}_{s}^{T}\left(\boldsymbol{P}_{s}-\boldsymbol{p}_{s} \boldsymbol{p}_{s}^{T}\right) \boldsymbol{X}_{s}$

$$
\begin{aligned}
& \boldsymbol{P}_{s}=\operatorname{diag}\left(\boldsymbol{p}_{s}\right) \\
& \boldsymbol{p}_{s}=\left(p_{1 s}, \ldots, p_{J s}\right)^{T} \\
& \boldsymbol{X}_{s}^{T}=\left[\boldsymbol{f}\left(\boldsymbol{x}_{j s}\right)\right]_{j \in\{1, \ldots, J\}} \\
& \boldsymbol{X}=\left[\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{S}\right] \\
& p_{j s}=\frac{\exp \left[\boldsymbol{f}^{T}\left(\boldsymbol{x}_{j s}\right) \boldsymbol{\beta}\right]}{\sum_{t=1}^{J} \exp \left[\boldsymbol{f}^{T}\left(\boldsymbol{x}_{t s}\right) \boldsymbol{\beta}\right]}
\end{aligned}
$$

Extra: Model for choice data concerning mixtures

- The attributes of the alternatives in a choice experiment are the ingredients of a mixture
- Vector $\boldsymbol{x}_{j s}$ contains the q ingredient proportions and that $\boldsymbol{f}\left(\boldsymbol{x}_{j s}\right)$ represents the model expansion of these proportions
- Most natural thing to do:

$$
U_{j s}=\sum_{i=1}^{q} \beta_{i} x_{i j s}+\sum_{i=1}^{q-1} \sum_{k=i+1}^{q} \beta_{i k} x_{i j s} x_{k j s}+\sum_{i=1}^{q-2} \sum_{k=i+1}^{q-1} \sum_{l=k+1}^{q} \beta_{i k l} x_{i j s} x_{k j s} x_{l j s}+\varepsilon_{j s}
$$

- Rewrite $x_{q j s}$ as $1-x_{1 j s}-\ldots-x_{q-1, j s}$

$$
U_{j s}=\boldsymbol{f}^{T}\left(\boldsymbol{x}_{j s}\right) \boldsymbol{\beta}=\sum_{i=1}^{q-1} \beta_{i}^{*} x_{i j s}+\sum_{i=1}^{q-1} \sum_{k=i+1}^{q} \beta_{i k} x_{i j s} x_{k j s}+\sum_{i=1}^{q-2} \sum_{k=i+1}^{q-1} \sum_{l=k+1}^{q} \beta_{i k l} x_{i j s} x_{k j s} x_{l j s}+\varepsilon_{j s}
$$

- With

$$
\begin{aligned}
& \boldsymbol{f}\left(\boldsymbol{x}_{j s}\right)=\left(x_{1 j s}, x_{2 j s}, \ldots, x_{q-1, j s}, x_{1 j s} x_{2 j s}, \ldots, x_{q-1, j s} x_{q j s}, x_{1 j s} x_{2 j s} x_{3 j s}, \ldots, x_{q-2, j s} x_{q-1, j s} x_{q j s}\right)^{T} \\
& \beta_{i}^{*}=\beta_{i}-\beta_{q} \text { for } i \in\{1, \ldots, q-1\} \\
& \boldsymbol{x}_{j s}=\left(x_{1 j s}, x_{2 j s}, \ldots, x_{q j s}\right)^{T} \quad \boldsymbol{\beta}=\left(\beta_{1}^{*}, \beta_{2}^{*}, \ldots, \beta_{q-1}^{*}, \beta_{1,2}, \ldots, \beta_{q-1, q}, \beta_{123}, \ldots, \beta_{q-2, q-1, q}\right)^{T}
\end{aligned}
$$

Fish patty experiment

D-optimal

D-optimal designs

- D-optimality criterion

$$
\mathcal{D}=\operatorname{det}\left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta})\right)
$$

D-optimal designs

- D-optimality criterion
$\mathcal{D}=\operatorname{det}\left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta})\right)$

D-optimal designs

- D-optimality criterion
$\mathcal{D}=\operatorname{det}\left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta})\right)$

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead

Fish patty experiment

- Experiment from the 1980s by Cornell
- Interest in firmness of patties
- Three fish species:
- mullet
- sheepshead

