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• Quantify consumer preferences
• Preference data is collected
• Respondents are presented sets of alternatives (choice sets) and asked to choose

- Example: choosing to buy product A, B or C
• Latent utility function -> probability of making each decision
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• In mixture experiments, products are expressed as combinations of 
proportions of ingredients

• The researchers' interest is generally in one or more characteristics of the 
mixture

• In this work, the characteristic of interest is the preference of respondents
• Choice experiments are ideal to collect data for quantifying and modeling 

preferences for mixtures
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• First example by Courcoux and Séménou (1997), preferences for cocktails
- mango juice
- lemon juice
- blackcurrant syrup

• 60 people, each making 8 pairwise comparisons
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• Experiments are expensive, cumbersome and time-consuming
• Efficient experimental designs → reliable information
• Optimal design of experiments: the branch of statistics that deals with the 

construction of efficient experimental designs
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Optimal choice experiments with mixtures

• D-optimal experimental designs → low-variance estimators
• We want to have a mixture that maximizes consumer preference
• Precise predictions are crucial
• I-optimal experimental designs → low-variance prediction
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• Mixture models assume two or more ingredients and a response variable that 
depends only on the relative proportions of the ingredients in the mixture

• Each mixture is described as a combination of q ingredient proportions (0 to 1)
• Constraint: proportions sum up to one → perfect collinearity
• Special-cubic Scheffé model:
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Multinomial logit model for choice data
• A respondent faces S choice sets involving J alternatives each
• Respondent chooses the alternative that has the highest perceived utility
• The probability that a respondent chooses alternative j ∈ {1, ..., J} in choice 

set s is
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• We assume vector       contains the q ingredient proportions and r process 
variables

• Perceived utility modeled as
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• Original experiment by Courcoux and Semenou
• September 2019: students from KU Leuven replicated the experiment with 35 

respondents
• Each respondent tasted 4 choice sets of size 2
• Simulated responses for temperature (process variable)
• Prior distribution for parameter vector β in a second-order Scheffé model and 

MNL model for Bayesian D- and I-optimal designs
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● Subjected to different processing conditions: 
○ oven cooking temperature (375 or 425 degrees Fahrenheit) 
○ oven cooking time (25 or 40 minutes) 
○ deep fat frying time (25 or 40 seconds)

● Assuming firmness is proportional to utility
● Point estimates with 3 levels of uncertainty controlled by κ parameter
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Future work
• Extending the algorithm to find designs with an upper bound on the number of distinct mixtures 

and/or an upper bound on the number of distinct choice sets

• Models that take into account possible presence of consumer heterogeneity

Contributions
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• D-optimal designs: low-variance estimators
• I-optimal designs: low-variance predictions
• Information matrix of multinomial logit model:
• With
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• The attributes of the alternatives in a choice experiment are the ingredients 
of a mixture

• Vector       contains the q ingredient proportions and that            represents 
the model expansion of these proportions

• Most natural thing to do: 

Extra: Model for choice data concerning mixtures

• Rewrite          as

• With
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