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Choice modeling and choice 
experiments



• Quantify preferences
• Preference data is collected
• Respondents choose between sets of alternatives (choice sets)

- Example: choosing to buy product A, B or C
• Latent utility function → probability of making each decision

Discrete choice experiments
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Mixture experiments



● Many products and services can be described as mixtures of ingredients
● Examples:

○ ingredients of bread
○ ingredients used to make a cocktail
○ sand, water and cement to make concrete
○ primary colors to make new colors

Mixtures
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• In mixture experiments, products are expressed as combinations of
proportions of ingredients

• The researchers' interest is generally in one or more characteristics of the 
mixture

• In this work, the characteristic of interest is the preference of respondents
• Choice experiments are ideal

3 / 19 

Mixtures



Combining choice models and mixture 
models



• First example by Courcoux and Séménou (1997), preferences for cocktails
- mango juice
- lemon juice
- blackcurrant syrup

• 60 people, each making 8 pairwise comparisons

Choice experiments with mixtures

Choice 
models

Mixture  
models

This work
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• Experiments are expensive, cumbersome and time-consuming
• Efficient experimental designs → reliable information
• Optimal design of experiments: the branch of statistics that deals with the 

construction of efficient experimental designs

Designing choice experiments with mixtures
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Optimality criteria for choice 
experiments



Optimal choice experiments with mixtures
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• D-optimal experimental designs → low-variance estimators
• We want to find a mixture that maximizes consumer preference
• Precise predictions are crucial
• I-optimal experimental designs → low-variance prediction



Models for data from mixture experiments

• Mixture models assume two or more ingredients and a response variable that 
depends only on the relative proportions of the ingredients in the mixture

• Each mixture is described as a combination of q ingredient proportions (0 to 1)
• Constraint: proportions sum up to one → perfect collinearity
• Special-cubic Scheffé model:
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Including process variables

● The result of a mixture may depend on other characteristics
● Additional variables → process variables
● Second-order Scheffé model
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Multinomial logit model for choice data
• A respondent faces S choice sets involving J alternatives each
• Respondent chooses the alternative that has the highest perceived utility
• The probability that a respondent chooses alternative j in choice set s is
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• We assume vector contains the q ingredient proportions and r process 
variables

• Perceived utility modeled as

Model for choice data concerning mixtures

10 / 19 



• D-optimality criterion

D-optimal designs

prior distribution
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• D-optimality criterion

D-optimal designs

• Bayesian D-optimality criterion

• Numerical approximation to Bayesian D-optimality criterion
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I-optimal designs

• Bayesian I-optimality criterion

• Numerical approximation to Bayesian I-optimality criterion

• I-optimality criterion
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Example



• Original experiment by Courcoux and Semenou
• September 2019: students from KU Leuven replicated the experiment with 35 

respondents
• Each respondent tasted 4 choice sets of size 2
• Simulated responses for temperature (process variable) → β parameter vector
• β used as prior distribution in a second-order Scheffé model and MNL model

for Bayesian D- and I-optimal designs
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Cocktail preferences



Cocktail preferences
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Cocktail preferences
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Temperature Temperature



Cocktail preferences
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Bayesian I-optimal design
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Upper bound on the number of distinct mixtures 

261 different mixtures
I-opt = 2.72

20 different mixtures
I-opt = 2.85



18 / 19 

Fruit flies’ color preferences



• Bayesian I-optimal designs for choice experiments with mixtures by Mario Becerra 
and Peter Goos. Chemometrics and Intelligent Laboratory Systems 217 (2021): 
104395. DOI: 10.1016/j.chemolab.2021.104395

• Bayesian D- and I-optimal designs for choice experiments involving mixtures and 
process variables by Mario Becerra and Peter Goos. Food Quality and 
Preference. DOI: 10.1016/j.foodqual.2023.104928

• R package with our algorithms (https://github.com/mariobecerra/opdesmixr)

• Mario Becerra’s website (with links to papers, R package, and code):
mariobecerra.github.io/

More information

https://github.com/mariobecerra/opdesmixr
http://mariobecerra.github.io/

