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A B S T R A C T

Discrete choice experiments are frequently used to quantify consumer preferences by having respondents choose
between different alternatives. Choice experiments involving mixtures of ingredients have been largely over-
looked in the literature, even though many products and services can be described as mixtures of ingredients. As a
consequence, little research has been done on the optimal design of choice experiments involving mixtures. The
only existing research has focused on D-optimal designs, which means that an estimation-based approach was
adopted. However, in experiments with mixtures, it is crucial to obtain models that yield precise predictions for
any combination of ingredient proportions. This is because the goal of mixture experiments generally is to find the
mixture that optimizes the respondents’ utility. As a result, the I-optimality criterion is more suitable for designing
choice experiments with mixtures than the D-optimality criterion because the I-optimality criterion focuses on
getting precise predictions with the estimated statistical model. In this paper, we study Bayesian I-optimal de-
signs, compare them with their Bayesian D-optimal counterparts, and show that the former designs perform
substantially better than the latter in terms of the variance of the predicted utility.
1. Introduction

Discrete choice experiments are frequently used to quantify consumer
preferences. These experiments collect stated preference data and are
carried out by presenting respondents sets of alternatives, called choice
sets, and having them choose between the alternatives. The respondents
repeat this task several times with different choice sets. It is common to
have the respondents do pairwise comparisons with choice sets that
involve two alternatives each.

Discrete choice experiments have been successfully applied in areas
such as marketing [1,2], transportation [3], health care [4], ecology
[5–7], and environmental economics [8–10]. However, choice experi-
ments involving mixtures have been largely overlooked in the literature,
even though many products and services can be described as mixtures of
ingredients.

Examples of mixture ingredients include the chemicals that are used
to create a pesticide [11]; media used in advertising campaigns [12];
components of a mobility budget such as car with fuel card and public
transport card [3]; cement, water, and sand to make concrete [13]; the
wheat varieties used to bake bread [14]; and the ingredients used to
make a drink such as mango juice, lime juice, and blackcurrant syrup [15,
16]. In mixture experiments, the products and services under
ario.becerra@kuleuven.be (M. B

July 2021; Accepted 19 July 20

.

investigation are expressed as combinations of proportions of ingredients
and the researchers’ interest is generally in one or more characteristics of
the mixture. In this paper, the characteristic of interest is the preference
of respondents. Choice experiments are ideal to collect data for quanti-
fying and modeling preferences for mixtures.

The first example of a discrete choice experiment concerningmixtures
was published by Courcoux and S�em�enou [15]. The experiment is actu-
ally a taste experiment to model the preferences for cocktails involving
different proportions of mango juice, lime juice, and blackcurrant syrup.
The resulting experimental data involve the responses of sixty people,
each making eight pairwise comparisons of different cocktails. Thus,
eight times in total, each respondent had to taste two different cocktails
and say which one they preferred. This means that the choice experiment
comprised 60 � 8 ¼ 480 choice sets, each of size 2. Goos and Hami-
douche [16] described how to combine Scheff�e models for data from
mixture experiments with the logit type models typically used for choice
experiments, and demonstrated the usefulness of the resulting combined
models using the data from Courcoux and S�em�enou [15].

As discrete choice experiments in general, and taste experiments in
the form of a discrete choice experiment in particular, are expensive,
cumbersome and time-consuming, efficient experimental designs are
required so that the experiments provide reliable information for
ecerra).
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statistical modeling, precise estimation of model parameters and precise
predictions. Optimal design of experiments is the branch of statistics
dealing with the construction of efficient experimental designs.

Little research has been done concerning the optimal design of choice
experiments with mixtures. For their experiment, Courcoux and
S�em�enou [15] used an elegant ad hoc design construction combining a
simplex centroid design to define the mixtures used and a balanced
incomplete block design to define subsets of the mixtures. Assuming a
multinomial logit model, Ruseckaite et al. [17] compared two algorithms
to find D-optimal designs for choice experiments with mixtures. A
D-optimal design is an experimental design that maximizes the deter-
minant of the Fisher information matrix. The D-optimal design approach
can be viewed as an estimation-based approach, because it is intended to
minimize the generalized variance of the estimators of the model pa-
rameters. D-optimal experimental designs are thus a good choice if
obtaining low-variance estimators is the main goal of the choice exper-
iment. However, in experiments with mixtures, the goal generally is to
optimize the composition of the mixture to maximize consumer prefer-
ence. Therefore, in mixture experiments, it is crucial to obtain models
that yield precise predictions for any combination of ingredient pro-
portions. As a result, I-optimal experimental designs are more suitable for
choice experiments with mixtures than D-optimal ones. I-optimal designs
minimize the average prediction variance and therefore allow a better
identification of the mixture that maximizes the consumer preference. In
this paper, we therefore study I-optimal designs for discrete choice ex-
periments involving mixtures.

The rest of the paper is organized as follows. In Section 2, we describe
how to incorporate mixtures into the multinomial logit choice model. In
Section 3, we describe the D- and I-optimality criteria. In Section 4, we
outline the design construction algorithm we use. In Section 5, we pre-
sent our computational results. Finally, in Section 6, we summarize and
discuss our work and include some suggestions for future research.

2. Models

In this section, we introduce the most commonly used models for data
from mixture experiments as well as the multinomial logit model for
choice data, and explain how to combine the two models for data from
choice experiments involving mixtures.
2.1. Models for data from mixture experiments

Mixture experiments involve two or more ingredients and a response
variable that depends only on the relative proportions of the ingredients
in themixture. Eachmixture is described as a combination of q ingredient
proportions, with the constraint that these proportions sum up to one.
Due to this constraint, a classical regression model involving an intercept
and linear terms in the ingredient proportions exhibits perfect collin-
earity. Therefore, researchers must use dedicated regression models
when analyzing data from mixture experiments. The most commonly
used family of models for data from mixture experiments is the Scheff�e
family [18,19]. The most popular Scheff�e models are the first-order,
second-order, and special-cubic models.

Denoting the response in a traditional mixture experiment with a
continuous outcome by Y and the q ingredient proportions by x1, x2, …,
xq, with xi � 0 and

Pq
i¼1xi ¼ 1, the first-order Scheff�e model is

Y ¼
Xq
i¼1

βixi þ ϵ:

The second-order Scheff�e model is

Y ¼
Xq
i¼1

βixi þ
Xq�1

i¼1

Xq
j¼iþ1

βijxixj þ ϵ;

and, finally, the special-cubic Scheff�e model is
2

Y ¼
Xq

βixi þ
Xq�1 Xq

βijxixj þ
Xq�2 Xq�1 Xq

βijkxixjxk þ ϵ:

i¼1 i¼1 j¼iþ1 i¼1 j¼iþ1 k¼jþ1

In all three cases, ϵ denotes the error term, which, traditionally, is
assumed to be normally distributed.
2.2. Multinomial logit model for choice data

The multinomial logit model builds on random-utility theory and
assumes that a respondent in a choice experiment faces S choice sets
involving J alternatives. The model assumes that, within each choice set
s 2 f1;…; Sg, each respondent chooses the alternative that has the
highest perceived utility. Therefore, the probability that a respondent
chooses alternative j 2 f1;…; Jg in choice set s, denoted by pjs, is the
probability that the perceived utility of alternative j in choice set s,
denoted by Ujs, is larger than that of the other alternatives in the choice
set:

pjs ¼ P
�
Ujs > maxðU1s;…;Uj�1;s;Ujþ1;s;…;UJsÞ

�
Since each alternative in a choice set has a set of observable attributes

that characterize it, the perceived utility Ujs can be expressed as

Ujs ¼ f T ðxjsÞβþ ϵjs; (1)

where xjs is the vector that contains the attributes corresponding to
alternative j in choice set s, f(xjs) represents the model expansion of this
attribute vector, and β is the vector containing themodel parameters. The
model parameters contained within β express the preferences of the re-
spondents for the alternatives' attributes. The error terms ϵjs in Equation
(1) are assumed to be independent and identically Gumbel distributed.
The Gumbel distribution is also known as the generalized extreme value
distribution type I and as the log-Weibull distribution. As a result of the
distributional assumption, it can be shown that

pjs ¼
exp
�
f T ðxjsÞβ

�
PJ

t¼1exp
�
f TðxtsÞβ

�;
which is called the softmax function in some research areas.
2.3. Model for choice data concerning mixtures

In this paper, where we focus on choice experiments involving mix-
tures, we assume that the attributes of the alternatives in a choice
experiment are the ingredients of a mixture. Consequently, we assume
that the attribute vector xjs contains the q ingredient proportions x1, x2,
…, xq and that f(xjs) represents the model expansion of these proportions.
Following Ruseckaite et al. [17], we base the polynomial expansion f(xjs)
on the first-order, second-order, or special-cubic Scheff�e model;
depending on the complexity of the respondents’ preferences. To explain
how this is done, we start from the special-cubic model. The derivation of
the models based on the first-order and second-order Scheff�e model is
analogous.

When starting from the special-cubic Scheff�e model, the most natural
thing to do would be to write the perceived utility Ujs of a mixture
alternative j in choice set s as

Ujs ¼
Xq
i¼1

βixijs þ
Xq�1

i¼1

Xq
k¼iþ1

βikxijsxkjs þ
Xq�2

i¼1

Xq�1

k¼iþ1

Xq
l¼kþ1

βiklxijsxkjsxljs þ ϵjs;

with the error terms ϵjs assumed to be independent and identically
Gumbel distributed. However, due to the constraint that the ingredient
proportions must sum up to one, this leads to an inestimable multinomial
logit model. As a matter of fact, due to that constraint, we can rewrite xqjs
as 1 � x1js �…�xq�1,js and Ujs as
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Ujs ¼ Pq�1

βixijs þ βqð1� x1js �…� xq�1;j;sÞ þ
Xq�1 Xq

βikxijsxkjs

i¼1 i¼1 k¼iþ1

þPq�2

i¼1

Pq�1

k¼iþ1

Pq
l¼kþ1

βiklxijsxkjsxljs þ ϵjs

¼ βq þ
Xq�1

i¼1

ðβi � βqÞxijs þ
Xq�1

i¼1

Xq
k¼iþ1

βikxijsxkjs þ
Xq�2

i¼1

Xq�1

k¼iþ1Pq
l¼kþ1

βiklxijsxkjsxljs þ ϵjs:

This final expression for the perceived utility Ujs involves a constant,
βq. Because the multinomial logit model only takes into account differ-
ences in utility, that constant causes any choice model based on Ujs to be
ill-defined and therefore inestimable. This can be easily remedied by
dropping βq and using the following expression for the perceived utility:

Ujs ¼ f T ðxjsÞβþ ϵjs ¼
Xq�1

i¼1

β*i xijs þ
Xq�1

i¼1

Xq
k¼iþ1

βikxijsxkjs þ
Xq�2

i¼1

Xq�1

k¼iþ1Xq
l¼kþ1

βiklxijsxkjsxljs þ ϵjs;

with β*i ¼ βi � βq for i 2 f1;…; q� 1g. In this expression,

xjs ¼
�
x1js; x2js;…; xqjs

�T
and

f ðxjsÞ¼
�
x1js;x2js;…;xq�1;js;x1jsx2js;…;xq�1;jsxqjs;x1jsx2jsx3js;…;xq�2;jsxq�1;jsxqjs

�T
:

The parameter vector β for the special-cubic model is then given by

β ¼
�
β*1; β

*
2;…; β*q�1; β1;2;…; βq�1;q; β123;…; βq�2;q�1;q

�T
:

This vector has r ¼ (q3 þ 5q)/6 � 1 elements in the event the special-
cubic model is used. For the first- and second-order Scheff�e models, the
parameter vector β involves r ¼ q � 1 and r ¼ (q2 þ q)/2 � 1 elements,
respectively, after implementing the remedy to make the model
estimable.

3. Optimal design criteria

3.1. Information matrix

To select D- and I-optimal experimental designs, it is required to know
the informationmatrix of the model. For the multinomial logit model, the
information matrix I(X, β) is obtained as the sum of the information
matrices of each of the S choice sets [20]:

IðX; βÞ ¼
XS
s¼1

XT
s ðPs � psp

T
s ÞXs;

with ps ¼ ðp1s;…; pJsÞT , Ps ¼ diag(ps), XT
s ¼ �f ðxjsÞ�j2f1;…;Jg denoting the

model matrix corresponding to all alternatives in choice set s, and X ¼
½X1;…;XS� denoting the model matrix for all choice sets. The information
matrix I(X, β) is of dimension r� r. The inverse of the information matrix
is the asymptotic variance-covariance matrix of the parameter estimates.

Note that the information matrix depends on the unknown parameter
vector β, through the choice probabilities contained within ps and Ps. This
is typical for models that are not linear in the parameters, such as discrete
choice models, and it implies that prior information is needed to find
optimal designs [17,20,21]. The prior information can be in the form of a
point estimate, or in the form of a prior distribution. An optimal design
that uses only a point estimate is called a locally optimal design, whilst
one that uses a prior distribution is called a Bayesian optimal design.

In optimal experimental design, there are different criteria to measure
3

the quality of a design and the corresponding model matrix X. As pointed
out in Goos and Jones [22], the two most widely used criteria for
selecting experimental designs in business and industry are D-optimality
and I-optimality (also called V-optimality; see Goos and Syafitri [23]).
The former is an estimation-oriented criterion because it focuses on a
precise model estimation, while the latter is a prediction-oriented crite-
rion because it focuses on getting precise predictions with the estimated
statistical model.

3.2. D-optimal designs

The D-optimality criterion is the most traditional metric used in the
design of choice experiments [24–29]. For a model matrix X and
parameter vector β, the D-optimality criterion can be defined as

D ¼ log

0
@det

��
I�1ðX; βÞ� �1r

1
A; (2)

where I�1(X, β) is the asymptotic variance-covariance matrix and the
inverse of the information matrix of the parameter estimates. A design
that minimizes Equation (2) using a point estimate of β is called a locally
D-optimal design. The problem with locally D-optimal designs is that
they may perform poorly for values of the parameter vector β for which
they were not optimized. This weakness is, of course, highly relevant
because the true values of the model parameters are unknown.

Bayesian designs take into account prior information and uncertainty
about the parameter vector β. More specifically, they are based on a prior
distribution π(β) which summarizes the prior knowledge concerning β.
Most of the Bayesian design constructions in the choice experiments
literature adopt the approach where the D-optimality criterion is aver-
aged over the prior distribution [24,26,29]. This is also the approach we
use. Therefore, following Ruseckaite et al. [17], we define the Bayesian
D-optimality criterion for the multinomial logit model as

DB ¼ log

0
@Z

Rr

�
det
�
I�1ðX; βÞ� �1rπðβÞdβ

1
A; (3)

where π(β) is the prior distribution of β. We refer to a design that mini-
mizes the Bayesian D-optimality criterion as a Bayesian D-optimal design,
even though the criterion does not take into account the posterior dis-
tribution and some authors therefore prefer to call these designs pseudo-
Bayesian designs [30].

3.3. I-optimal designs

The I-optimality criterion is generally defined as the average of the
prediction variance over the experimental region, which we denote by χ
and which is the (q � 1)-dimensional simplex if there are no constraints
on the ingredient proportions other than those mentioned in Section 2.1.
Now, when using choice models, there are two ways in which we can
define I-optimality. If the goal is to predict choice probabilities, the I-
optimality criterion is the average variance of the predicted choice
probabilities. If the goal is to predict perceived utilities, the I-optimality
criterion is the average variance of the predicted utilities.

3.3.1. I-optimality for predicted choice probabilities
Kessels et al. [31] computed I-optimal designs based on the variance

of the predicted choice probability, Var
h
p̂js
i
. Since this prediction vari-

ance cannot be calculated analytically, they approximated it using a
first-order Taylor series expansion of the choice probability:

Var
�
p̂js
� � cT ðxjsÞI�1ðX; βÞcðxjsÞ;

where p̂js denotes the predicted choice probability, and
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cðxjsÞ ¼ ∂pjs ¼ pjs xjs �
XJ

ptsxts

∂β

 
t¼1

!

As a consequence, the I-optimality criterion of Kessels et al. [31] is
Z
χ
Var
�
p̂js
�
dxjsZ

χ
dxjs

¼

Z
χ
cTðxjsÞI�1ðX; βÞcðxjsÞdxjsZ

χ
dxjs

¼

Z
χ
tr
�
I�1ðX; βÞcðxjsÞcT ðxjsÞ

�
dxjsZ

χ
dxjs

¼ tr
�
I�1ðX; βÞWpðβÞ

�Z
χ
dxjs

; (4)

where

WpðβÞ ¼
Z
χ
cðxjsÞcTðxjsÞdxjs (5)

is referred to as the moments matrix in the literature on I-optimality
and the subscript p refers to the fact that this is the moments matrix for
the I-optimality criterion based on choice probabilities. The denominator
in Equation (4) is the volume of the experimental region χ. This de-
nominator can be safely ignored when constructing I-optimal designs
because it is constant for all designs for a given experiment.

Due to the fact that Kessels et al. [31] considered only categorical
attributes in their choice experiments, they were able to calculate the
moments matrix exactly for any given parameter vector β. This is
impossible when continuous attributes are considered, because there is
no closed-form solution for the integral in Equation (5). Since the attri-
butes we consider in this paper are ingredient proportions, we also
cannot calculate Wp(β) exactly. The solution to this problem would be to
numerically approximate the integral in Equation (5).

In our view, basing the I-optimality criterion for choice experiments
with mixtures on predicted probabilities suffers from four weaknesses.
First, there is no analytical expression for the variance of a predicted choice
probability, which necessitates a first approximation. Second, there is no
closed form expression for the average of the approximation of the vari-
ance of the predicted choice probability, which necessitates a second
approximation. Third, the fact that Wp(β) depends on β implies that it
increases the computational burden in the event a Bayesian optimal design
is desired. Finally, any choice probability is always calculated with respect
to a certain choice set, involving a certain number of alternatives. Hence, to
be able to use the I-optimality criterion based on predicted probabilities,
we need to pick a choice set size, a number of choice sets to consider and
alternatives to be included in these choice sets. As there is no reason to
prefer one choice set size, one number of choice sets, or one set of alter-
natives over another; there is no indisputable way to define the I-opti-
mality criterion based on choice probabilities. Due to these weaknesses, we
prefer to define the I-optimality criterion for choice experiments with
mixtures based on predicted utilities.

3.3.2. I-optimality for predicted utilities
In this paper, we base the I-optimality criterion on predicted utilities.

One reason to do so is that approach does not suffer from the four
weaknesses we identified for the I-optimality criterion based on pre-
dicted choice probabilities. Another reason for our approach is that, to
find the mixture that maximizes the consumer preferences, it suffices to
identify the mixture that maximizes the predicted utility. As a matter of
fact, the mixture with the largest possible predicted utility will auto-
matically have the largest predicted choice probability, regardless of the
alternatives to it. Finally, starting from predicted utilities is mathemati-
cally elegant because there is a closed form expression for the variance of
the predicted perceived utility, for a given parameter vector β.

The variance of the predicted utility is defined as
4

Var Ûjs ¼ f T ðxjsÞVar β̂ f ðxjsÞ ¼ f T ðxjsÞI�1ðX; βÞf ðxjsÞ;

h i h i
for a given parameter vector β. As a result, the average variance of the

predicted utility is
Z
χ
f TðxjsÞI�1ðX;βÞf ðxjsÞdxjs¼

Z
χ
tr
�
I�1ðX;βÞf ðxjsÞf TðxjsÞ

�
dxjs¼tr

�
I�1ðX;βÞWu

�

where

Wu ¼
Z
χ
f ðxjsÞf T ðxjsÞdxjs (6)

is the moments matrix corresponding to our definition of the I-opti-
mality criterion, with the subscript u referring to the fact that this is the
moments matrix for the I-optimality criterion based on predicted utilities.

In the event the experimental region χ is the (q � 1)-dimensional
simplex, there exists a closed-form expression for the moments matrixWu
that does not depend on the parameter vector β [32]. This means that,
even if a Bayesian optimal design is desired, the moments matrix needs to
be computed only once in the design creation process, reducing the
computational burden. The elements of the moments matrix Wu can be
obtained using the following formula given in Goos et al. [32], Goos et al.
[33], and DeGroot [34]:

Z
χ
xp11 x

p2
2 …xpqq dx1dx2…dxq�1 ¼

Qq
i¼1Γðpi þ 1Þ

Γ
�
qþPq

i¼1pi
�:

Our local I-optimality criterion is given by

I ¼
Z
χ
Var
h
Ûjs

i
dxjs ¼ tr

�
I�1ðX; βÞWU

�
;

while our Bayesian I-optimality criterion is

IB ¼
Z
Rr
tr
�
I�1ðX; βÞWU

�
πðβÞdβ: (7)

In these expressions, we ignore the volume of the experimental re-
gion, 1/(q � 1)!, because, for the optimization of the designs, it is an
irrelevant constant.

4. Construction of I-optimal designs

To compute Bayesian I-optimal designs for choice experiments with
mixtures, we used a coordinate-exchange algorithm [22,35], modified to
generate Bayesian I-optimal designs for choice experiments with mix-
tures. A coordinate-exchange algorithm was also used by Kessels et al.
[31] and Ruseckaite et al. [17] in the context of choice experimentation.
Our algorithm was implemented in the R programming language [36] in
which we created a package called opdesmixr which is available at htt
ps://github.com/mariobecerra/opdesmixr. The package was created
with the aid of several other R packages [37–44], and allows the
computation of locally D-optimal, Bayesian D-optimal, locally I-optimal,
and Bayesian I-optimal designs for first-order, second-order, and
special-cubic Scheff�e models. The user must specify either a single
parameter vector for a locally optimal design or a matrix of draws from
the parameter vector's prior distribution for a Bayesian optimal design.

Our coordinate-exchange algorithm starts from a random initial
design, and starts by optimizing the first ingredient proportion of the first
alternative within the first choice set, followed by the second ingredient
proportion of the first alternative within the first choice set, and so on,
until all q ingredient proportions have been optimized. The algorithm
then repeats this process for each alternative and each choice set in the
design. The whole process is repeated until the design can no longer be
improved or until a maximum number of iterations has been reached. As
pointed out in Piepel et al. [45], Goos and Jones [22], and Ruseckaite

https://github.com/mariobecerra/opdesmixr
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et al. [17], the coordinate-exchange algorithm has to undergo some
modifications to deal with mixtures. As a matter of fact, because the
mixture proportions have to sum up to one, they cannot be changed
independently, and a change in one proportion requires a change in at
least one other proportion. We deal with this dependency by changing
proportions using the so-called Cox effect direction [13,22,45]. This
means that, after a change of one of the ingredient proportions, xijs, to xijs
þ Δ, we modify the other q � 1 proportions as follows:

xnewkjs :¼

8>>><
>>>:

�
1� Δ

1� xijs

	
xkjs if xijs 6¼ 1;

1� ðxijs þ ΔÞ
q� 1

if xijs ¼ 1:

Three other aspects concerning our coordinate-exchange algorithm are
worth mentioning too. First, we recommend running the coordinate-
exchange algorithm multiple times, each time starting from a different
random initial design. This is because the coordinate-exchange algorithm
is a heuristic optimization algorithm, which cannot guarantee optimality,
and by running it multiple times, we have a bigger chance of finding a truly
optimal design. The larger the number of ingredients and the more com-
plex the model, the larger the number of starts of the coordinate-exchange
algorithm should be. For the examples discussed in Section 5, we use 80
random starts of the algorithm because the number of ingredients is as low
as three and the number of parameters is only six. Second, we seek the
optimal value of every individual ingredient proportion xijs using Brent's
univariate optimization method [46]. Third, we need to approximate the
Bayesian optimality criteria numerically, because there is no closed-form
solution to the integrals in Equations (3) and (7). It is common to do this
utilizing random or systematic draws from the prior distribution π(β) [2,
17,31,47]. Denoting the R draws from the prior distribution by β(i), the
approximations for Equations (3) and (7) are

DB � log

0
@1
R

XR
i¼1

�
det
�
I�1ðX; βðiÞÞ� �1r

1
A; (8)

and

IB � 1
R

XR
i¼1

tr
�
I�1ðX; βðiÞÞWU

�
(9)

One commonly used method to obtain draws from a prior distribution
involves Halton sequences. The resulting Halton draws provide a good
coverage of the entire density domain, as well as negatively correlated
draws that reduce the variance of the approximation to the integral [2].
Therefore, like Ruseckaite et al. [17], we used 128 Halton draws from the
prior distribution in both of our examples in the next section. The number
128 provides a good enough approximation for the number of parameters
in the models used in the two examples. For choice experiments involving
more model parameters, a larger number of Halton draws should be used.
For more details about Halton draws and other approximation methods, as
well as their advantages and disadvantages, we refer to Yu et al. [47].

5. Results

This section shows our computational results for two example choice
experiments involving a mixture. The first example is the taste experi-
ment involving cocktails from Courcoux and S�em�enou [15], while the
second example involves an experiment with artificial sweeteners for a
sports drink from Cornell [13].

5.1. Cocktail preferences

Ruseckaite et al. [17] revisited an experiment by Courcoux and
S�em�enou [15] in which seven fruit cocktails involving mango juice
(whose true proportion we denote by a1), blackcurrant syrup (whose true
5

proportion we denote by a2), and lemon juice (whose true proportion we
denote by a3) were tasted. This was done by 60 consumers which were
asked to taste different pairs of the seven fruit cocktails and to indicate
their preferred cocktail in each pair. Each respondent had to evaluate
eight of 21 possible pairs, resulting in a final experimental design with
60 � 8 ¼ 480 choice sets of size 2.

In the experiment, Courcoux and S�em�enou [15] imposed lower
bounds of 0.3, 0.15 and 0.1 on the three true ingredient proportions a1,
a2, and a3. To deal with this issue and to be able to use our imple-
mentation of the coordinate-exchange algorithm, like Ruseckaite et al.
[17] did, we expressed the mixtures defining the cocktails in terms of
so-called pseudocomponents x1, x2, and x3. These pseudocomponents are
defined such that they take a minimum value of 0 and a maximum value
of 1, and sum up to one. The conversion of the true ingredient pro-
portions into pseudocomponent proportions is done via the formula xi ¼
(ai� Li)/(1� L), where Li denotes the lower bound of ingredient i and L is
the sum of the lower bounds for all q ingredient proportions.

To compute D-optimal designs for the cocktail experiment, Ruseck-
aite et al. [17] obtained a prior distribution for the parameter vector β in
a special-cubic Scheff�e model. More specifically, they re-analyzed the
data from Courcoux and S�em�enou [15] and derived a multivariate
normal prior distribution for β with mean vector β0 ¼ (1.36,1.57,2.47,
�0.43,0.50,1.09)T and variance-covariance matrix

X
0

¼

0
BBBBBB@

6:14 5:00 2:74 �0:43 �2:81 �3:33
5:00 6:76 4:47 �1:79 �6:13 �3:51
2:74 4:47 3:45 �1:38 �4:71 �2:17
�0:43 �1:79 �1:38 1:18 2:39 0:71
�2:81 �6:13 �4:71 2:39 7:43 2:71
�3:33 �3:51 �2:17 0:71 2:71 2:49

1
CCCCCCA

We used the same prior distribution to compute optimal designs with
16 choice sets of size 2 assuming a special-cubic Scheff�e model. First, we
computed a Bayesian D-optimal design to benchmark our implementa-
tion of the coordinate-exchange algorithm against that of Ruseckaite
et al. [17], and observed that our design has a slightly better D-optimality
criterion value than the original when evaluated using our set of Halton
draws. After this validation of our algorithm, we also computed a
Bayesian I-optimal design. Our Bayesian D- and I-optimal designs are
given in Tables 1 and 2 in the appendix and shown graphically in Fig. 1.
In the figure, the mixtures in each of the 16 choice sets are presented in
terms of the pseudocomponent proportions and visualized using different
markers for each choice set. The four colored areas in the graph corre-
spond to four prior utility intervals, corresponding to the cutoff values 0,
0.5625, 1.125, 1.6875, and 2.25. The yellow area is the set of mixtures
with the lowest a priori utility values, while the red area indicates the set
of mixtures with the highest a priori utility values.

Fig. 2 shows the fraction of the design space plots of the two Bayesian
optimal designs we computed and of the benchmark design from
Ruseckaite et al. [17]. Fraction of design space plots were originally
introduced by Zahran et al. [48] and display the performance of a design in
terms of the prediction variance for each point in the experimental region
or design space. The horizontal axis corresponds to a fraction of the
experimental region, while the vertical axis ranges from the minimum
prediction variance to the maximum prediction variance over the entire
experimental region [22]. In the context of choice experiments, the pre-
diction variance depends on the unknown parameter vector. We dealt with
this issue by computing prediction variances for 128 Halton draws from
the prior distribution of the parameter vector and averaging the results.

The most striking conclusion from the fraction of design space plot is
that the prediction variances are much lower for the Bayesian I-optimal
design than for the Bayesian D-optimal designs. The plot shows, for
instance, that the median prediction variance for the Bayesian I-optimal
design is about 1.55, while it is about 3 for our Bayesian D-optimal design
and 3.2 for the benchmark design. The maximum prediction variance is
also substantially lower for the Bayesian I-optimal design. In summary,
using the Bayesian I-optimal design provides much added value in terms



Fig. 1. Bayesian optimal designs produced by our coordinate-exchange algorithm for the cocktail experiment. The colors represent utilities belonging to the following
intervals: [0, 0.5625), [0.5625, 1.125), [1.125, 1.6875), [1.6875, 2.25). (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 2. Fraction of design space plot of our Bayesian D- and I-optimal designs for
the cocktail experiment as well as the Bayesian D-optimal design from
Ruseckaite et al. [17].
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of precision of prediction when compared to Bayesian D-optimal designs.
It is not easy to describe the properties of optimal choice designs. To

compare the Bayesian D- and I-optimal designs, we quantified the utility
Fig. 3. Technical properties of our Bayesian D- and

6

balance in the designs’ choice sets and computed the Euclidean distances
between the alternatives in the choice sets. Utility balance refers to the
property that alternatives within a choice set possess the same or a
similar a priori utility and therefore have the same or almost the same a
priori choice probability. Utility balance was advocated by Huber and
Zwerina [49] as a desirable property for choice designs. A choice set of
two alternatives is perfectly utility balanced in the event the choice
probabilities of the two alternatives both equal 0.5 and the product of the
two probabilities is 0.25. Choice sets that are not at all utility balanced
involve alternatives with very different utilities and choice probabilities.
For such choice sets, the product of the two choice probabilities is sub-
stantially lower than 0.25. Fig. 3a shows boxplots of the product of the
choice probabilities in the choice sets of our Bayesian D-optimal and our
Bayesian I-optimal design. The D-optimal design tends to have choice sets
with a higher utility balance than the I-optimal design. However, the
median values for the products of the choice probabilities in both designs
are very similar and roughly equal to 0.17. This value corresponds to
choice probabilities of about 0.78 and 0.22, implying that the Bayesian
optimal designs do not exhibit much utility balance. Fig. 3b shows the
Euclidean distances between the two alternatives within a choice set for
our Bayesian D- and I-optimal designs. The alternatives within a single
I-optimal designs for the cocktail experiment.
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choice set tend to be closer together in the D-optimal design than in the
I-optimal design. This can also be observed in Fig. 1 by comparing the
distances between the mixtures represented by a given marker. That the
alternatives within the choice sets of the I-optimal design are located
further from each other is in line with our observations that they exhibit
less utility balance. As a matter of fact, when the distance between two
mixtures is large, they typically appear in a different utility interval (in
other words, in a differently colored area) and their choice probabilities
are necessarily quite different.
Fig. 4. Bayesian optimal designs for the artificial sweetener experiment. The
colors represent utilities belonging to the following intervals: [0, 0.375),
[0.375, 0.75), [0.75, 1.125), [1.125, 1.34). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version
of this article.)
5.2. Artificial sweetener experiment

As a second example,wealso revisit the artificial sweetener experiment,
a three-ingredient mixture experiment from Cornell [13], intended to
investigate whether an artificial sweetener could be used in an athletic
sports drink. The original response variable of interest was ‘intensity of
sweetness aftertaste’, but, just like Ruseckaite et al. [17], we interpret the
intensity of sweetness aftertaste as being proportional to the utility in the
multinomial logit model and consider a choice experiment consisting of 7
choice sets of size two as an alternative to the original experiment in
Ref. [13].

For this example, Ruseckaite et al. [17] started with a special-cubic
Scheff�e model to construct Bayesian D-optimal designs with a multivar-
iate normal prior distribution with mean vector

β0 ¼ ð0:86; 0:21; 3:07; 2:34; 3:24;�20:59ÞT

and variance-covariance matrices of the form Σ0 ¼ κI7, where κ is a
positive scalar that controls the level of uncertainty and I7 is the identity
matrix of size 7. A higher value of κ indicates a higher level of uncertainty
concerning the parameter values. The variance-covariance matrix was
transformed to the identified parameter space, as mentioned in Section
2.3. The transformed variance-covariance matrix, denoted by Σ0

0, is

Σ0
0 ¼

0
BBBBBB@

2κ κ 0 0 0 0
κ 2κ 0 0 0 0
0 0 κ 0 0 0
0 0 0 κ 0 0
0 0 0 0 κ 0
0 0 0 0 0 κ

1
CCCCCCA

With our implementation of the coordinate-exchange algorithm, we
first computed Bayesian D-optimal designs for the same κ values as
Ruseckaite et al. [17], namely 0.5, 5, 10 and 30. When comparing our
D-optimal designs to those of Ruseckaite et al. [17] using our sets of 128
Halton draws from the prior distributions, we observed that our designs
have D-optimality criterion values very close to those of Ruseckaite et al.
[17], with three designs being slightly better and one being slightly
worse. This provides another validation to our algorithm. We also
computed Bayesian I-optimal designs for the four κ values. All of our
Bayesian D- and I-optimal designs are shown graphically in Fig. 4. They
are given in tabular format in Tables 3–10 in the appendix. The four
different colors in Fig. 4 correspond to four intervals for the utility of the
mixtures, with bounds 0, 0.375, 0.75, 1.125, and 1.34. It can be seen that
the spread in the points in the optimal designs increases with κ, but this
phenomenon is more pronounced for the Bayesian I-optimal designs than
for the Bayesian D-optimal designs.

Fig. 5 shows the fraction of design space plots for our Bayesian D- and
I-optimal designs, as well as for the designs of Ruseckaite et al. [17]. For
each value of κ, the I-optimal design has a much lower prediction vari-
ance than our D-optimal design and that of Ruseckaite et al. [17]. The
difference in predictive performance, in favor of the Bayesian I-optimal
designs, increases with κ.

Fig. 6 shows boxplots of the product of the choice probabilities in
each choice set for our Bayesian D- and I-optimal designs for the different
κ values. For κ ¼ 0.5, both types of designs score highly in utility balance,
and there is hardly any difference between them in terms of utility
7

balance. However, as κ increases, the product of the probabilities drops,
meaning that the designs become less utility balanced.

Fig. 7 shows boxplots of the Euclidean distances between the two al-
ternatives within a choice set for our Bayesian D- and I-optimal designs.
Just like in the cocktail experiment, mixtures within a single choice set
tend to be closer together in the D-optimal designs than in the I-optimal
designs, except when κ ¼ 30. For that value of κ, there is no major dif-
ference in the Euclidean distances between the alternatives within the
choice sets of the D- and I-optimal designs. Finally, Fig. 7 shows that the
distances between alternatives with choice sets decrease with the value of



Fig. 5. Fraction of design space plots of the Bayesian optimal designs for the artificial sweetener experiment.

Fig. 6. Measures of utility balance for our Bayesian D- and I-optimal designs for the artificial sweetener experiment.

Fig. 7. Euclidean distances between alternatives within a choice set for our Bayesian D- and I-optimal designs for the artificial sweetener experiment.
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κ.

6. Discussion

In this paper, we introduced a computationally efficient definition for
I-optimal designs for choice experiments and embedded the new I-opti-
mality criterion in a coordinate-exchange algorithm for constructing I-
optimal designs. By means of two examples from the literature, we
demonstrated that the I-optimal designs perform substantially better than
their D-optimal counterparts in terms of the variance of the predicted
utility. We observed that I-optimal designs do not possess the utility
balance property, which Huber and Zwerina [49] considered to be
desirable for efficient choice designs. However, Louviere et al. [50]
argued against it, suggesting to instead derive an optimal design using an
appropriate prior distribution. We believe this to be a more sensible
8

choice given that it is our interest to have designs that yield precise
predictions for any combination of ingredient proportions.

While performing the research that led to this paper, we identified six
possible extensions of our work. First of all, it would be of interest to
extend the work presented here to other classes of models for data from
mixture experiments than the Scheff�e models, for example Becker models
or Cox's mixture polynomial models [13].

Second, the preference for a mixture may depend on characteristics
other than its composition. For example, the ideal cocktail composition
may also depend on the temperature at which it is served, or the most
preferred bread might not only depend on the proportions of the various
ingredients, but also on the baking time and the baking temperature. One
practical example of such a scenario can be found in Zijlstra et al. [3],
who observed that the preferred mobility budget mixture depends on the
budget size. To cope with this kind of complication, our choice model for
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mixtures must be extended to deal with the additional characteristics,
typically called process variables [22].

Third, we focused on the multinomial logit model, which assumes
that there is homogeneity in the preferences of the respondents. How-
ever, as demonstrated by Courcoux and S�em�enou [15] and Goos and
Hamidouche [16], this might be an unrealistic assumption. Therefore, it
would make sense to extend the models and algorithms presented here to
other types of models that take into account the possible presence of
consumer heterogeneity. Examples of such models are the mixed logit
model and the latent class choice model.

A fourth opportunity for future research is inspired by a practical
difficulty that arises when conducting choice experiments with mixtures.
When the number of distinct mixtures appearing in the Bayesian optimal
designs is large and the mixtures have to be tasted, it is logistically very
cumbersome to organize the experiment. For instance, organizing a
choice experiment in which 40 distinct mixtures have to be tasted in
perhaps 80 different choice sets is much harder to organize than a choice
experiment in which only 20 distinct mixtures have to be tasted in 40
different choice sets. While the former experiment may be preferable
from a statistical viewpoint, it may be practically infeasible. Developing
an algorithm to find Bayesian I-optimal designs with mixtures with an
upper bound on the number of distinct mixtures and/or an upper bound
on the number of distinct choice sets is therefore valuable from a prac-
titioner's point of view.

A fifth topic for future research would be to modify our coordinate-
exchange algorithm, so that it can also cope with experimental regions
that are not a simplex. Such experimental regions arise when there are
constraints on the ingredient proportions other than lower bounds for
9

individual proportions. Methodologically speaking, this is not highly
innovative, since the mixture coordinate-exchange algorithm of Piepel
et al. [45] for linear regression models is already able to deal with this
complication. However, embedding this capability in our implementa-
tion of the coordinate-exchange algorithm for choice experiments with
mixtures would be useful for practitioners.

Finally, a sixth topic for future research would be to extend the I-
optimality criterion to cope with model uncertainty. In this paper, we
assumed that the model form is known at the planning stage of the
experiment, which is not always the case in practice. Therefore, there is a
risk of bias in the predictions due to model misspecification. A design and
modeling strategy to deal with this possible misspecification would
protect experimenters against such bias.

Author statement

Mario Becerra: software, validation, methodology, writing - original
draft, formal analysis, visualization.

Peter Goos: conceptualization, methodology, investigation, resources,
writing - review & editing, supervision, project administration, funding
acquisition.
Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.
Appendix A. Design tables of cocktail experiment

In both tables, x1, x2, and x3 denote the pseudocomponents that range from 0 to 1, while a1, a2, and a3 are the ingredient proportions with their
original lower bounds.
Table 1

Bayesian D-optimal design for the cocktail experiment.

Choice set x1 x2 x3 a1 a2 a3
1
 0.00
 1.00
 0.00
 0.30
 0.60
 0.10

1
 0.60
 0.40
 0.00
 0.57
 0.33
 0.10

2
 1.00
 0.00
 0.00
 0.75
 0.15
 0.10

2
 0.46
 0.00
 0.54
 0.51
 0.15
 0.34

3
 0.00
 0.00
 1.00
 0.30
 0.15
 0.55

3
 0.00
 0.55
 0.45
 0.30
 0.40
 0.30

4
 0.00
 0.00
 1.00
 0.30
 0.15
 0.55

4
 0.00
 0.55
 0.45
 0.30
 0.40
 0.30

5
 0.60
 0.40
 0.00
 0.57
 0.33
 0.10

5
 0.00
 1.00
 0.00
 0.30
 0.60
 0.10

6
 1.00
 0.00
 0.00
 0.75
 0.15
 0.10

6
 0.40
 0.60
 0.00
 0.48
 0.42
 0.10

7
 0.00
 1.00
 0.00
 0.30
 0.60
 0.10

7
 0.00
 0.41
 0.59
 0.30
 0.34
 0.36

8
 1.00
 0.00
 0.00
 0.75
 0.15
 0.10

8
 0.31
 0.36
 0.33
 0.44
 0.31
 0.25

9
 0.00
 0.50
 0.50
 0.30
 0.38
 0.32

9
 0.40
 0.29
 0.31
 0.48
 0.28
 0.24

10
 0.00
 1.00
 0.00
 0.30
 0.60
 0.10

10
 0.36
 0.33
 0.31
 0.46
 0.30
 0.24

11
 0.00
 0.50
 0.50
 0.30
 0.38
 0.32

11
 0.40
 0.29
 0.31
 0.48
 0.28
 0.24

12
 0.40
 0.60
 0.00
 0.48
 0.42
 0.10

12
 1.00
 0.00
 0.00
 0.75
 0.15
 0.10

13
 0.49
 0.00
 0.51
 0.52
 0.15
 0.33

13
 0.00
 0.48
 0.52
 0.30
 0.37
 0.33

14
 0.52
 0.00
 0.48
 0.53
 0.15
 0.32

14
 0.27
 0.40
 0.33
 0.42
 0.33
 0.25

15
 0.00
 0.00
 1.00
 0.30
 0.15
 0.55

15
 0.53
 0.00
 0.47
 0.54
 0.15
 0.31

16
 0.54
 0.46
 0.00
 0.54
 0.36
 0.10

16
 0.30
 0.33
 0.38
 0.43
 0.30
 0.27
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Table 2
Bayesian I-optimal design for the cocktail experiment.

Choice set x1 x2 x3 a1 a2 a3
1
0
1
 0.00
 0.00
 1.00
 0.30
 0.15
 0.55

1
 0.58
 0.00
 0.42
 0.56
 0.15
 0.29

2
 1.00
 0.00
 0.00
 0.75
 0.15
 0.10

2
 0.36
 0.64
 0.00
 0.46
 0.44
 0.10

3
 0.00
 0.00
 1.00
 0.30
 0.15
 0.55

3
 0.58
 0.00
 0.42
 0.56
 0.15
 0.29

4
 0.03
 0.97
 0.00
 0.31
 0.59
 0.10

4
 0.29
 0.28
 0.43
 0.43
 0.27
 0.29

5
 0.00
 0.00
 1.00
 0.30
 0.15
 0.55

5
 0.00
 0.63
 0.37
 0.30
 0.43
 0.27

6
 0.00
 0.00
 1.00
 0.30
 0.15
 0.55

6
 0.30
 0.34
 0.36
 0.43
 0.30
 0.26

7
 0.00
 0.00
 1.00
 0.30
 0.15
 0.55

7
 0.00
 0.63
 0.37
 0.30
 0.43
 0.27

8
 0.00
 1.00
 0.00
 0.30
 0.60
 0.10

8
 0.65
 0.35
 0.00
 0.59
 0.31
 0.10

9
 1.00
 0.00
 0.00
 0.75
 0.15
 0.10

9
 0.30
 0.16
 0.53
 0.44
 0.22
 0.34

10
 0.00
 0.49
 0.51
 0.30
 0.37
 0.33

10
 0.57
 0.43
 0.00
 0.56
 0.34
 0.10

11
 0.00
 0.00
 1.00
 0.30
 0.15
 0.55

11
 0.30
 0.34
 0.36
 0.43
 0.30
 0.26

12
 0.00
 0.00
 1.00
 0.30
 0.15
 0.55

12
 0.30
 0.34
 0.36
 0.43
 0.30
 0.26

13
 0.45
 0.00
 0.55
 0.50
 0.15
 0.35

13
 0.23
 0.53
 0.24
 0.40
 0.39
 0.21

14
 0.00
 0.41
 0.59
 0.30
 0.34
 0.36

14
 0.50
 0.19
 0.31
 0.52
 0.24
 0.24

15
 0.00
 0.00
 1.00
 0.30
 0.15
 0.55

15
 0.49
 0.51
 0.00
 0.52
 0.38
 0.10

16
 0.00
 0.00
 1.00
 0.30
 0.15
 0.55

16
 0.30
 0.34
 0.36
 0.43
 0.30
 0.26
Appendix B. Design tables of artificial sweetener experiment
Table 3
Bayesian D-optimal design for the artificial sweetener experiment, when κ ¼ 0.5

Choice set x1 x2 x3
1
 0.00
 1.00
 0.00

1
 0.61
 0.39
 0.00

2
 0.00
 1.00
 0.00

2
 0.24
 0.30
 0.47

3
 0.00
 0.00
 1.00

3
 0.00
 0.67
 0.33

4
 1.00
 0.00
 0.00

4
 0.40
 0.60
 0.00

5
 0.22
 0.44
 0.33

5
 0.59
 0.00
 0.41

6
 0.40
 0.00
 0.60

6
 1.00
 0.00
 0.00

7
 0.00
 0.33
 0.67

7
 0.48
 0.25
 0.27
Table 4
Bayesian I-optimal design for the artificial sweetener experiment, when κ ¼ 0.5

Choice set x1 x2 x3
1
 0.00
 0.00
 1.00

1
 0.39
 0.34
 0.27

2
 0.00
 1.00
 0.00

2
 0.02
 0.00
 0.98

3
 1.00
 0.00
 0.00

3
 0.10
 0.70
 0.21

4
 0.00
 0.00
 1.00

4
 0.52
 0.00
 0.48

5
 0.00
 0.00
 1.00

5
 0.39
 0.34
 0.27

6
 0.52
 0.48
 0.00

6
 0.17
 0.15
 0.68

7
 0.06
 0.00
 0.94

7
 0.00
 0.51
 0.49
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Table 5
Bayesian D-optimal design for the artificial sweetener experiment, when κ ¼ 5.

Choice set x1 x2 x3
11
1
 0.00
 0.00
 1.00

1
 0.28
 0.28
 0.43

2
 0.56
 0.44
 0.00

2
 0.28
 0.30
 0.42

3
 0.00
 1.00
 0.00

3
 0.00
 0.48
 0.52

4
 1.00
 0.00
 0.00

4
 0.51
 0.49
 0.00

5
 0.00
 0.68
 0.32

5
 0.42
 0.32
 0.26

6
 1.00
 0.00
 0.00

6
 0.50
 0.00
 0.50

7
 0.56
 0.00
 0.44

7
 0.26
 0.41
 0.32
Table 6
Bayesian I-optimal design for the artificial sweetener experiment, when κ ¼ 5.

Choice set x1 x2 x3
1
 0.00
 0.00
 1.00

1
 0.47
 0.00
 0.53

2
 0.27
 0.43
 0.31

2
 0.08
 0.00
 0.92

3
 1.00
 0.00
 0.00

3
 0.39
 0.36
 0.25

4
 0.42
 0.27
 0.31

4
 0.00
 0.09
 0.91

5
 0.48
 0.52
 0.00

5
 0.18
 0.19
 0.62

6
 0.00
 1.00
 0.00

6
 0.33
 0.42
 0.24

7
 0.00
 0.00
 1.00

7
 0.00
 0.51
 0.49
Table 7
Bayesian D-optimal design for the artificial sweetener experiment, when κ ¼ 10.

Choice set x1 x2 x3
1
 0.00
 0.00
 1.00

1
 0.25
 0.24
 0.51

2
 0.00
 1.00
 0.00

2
 0.00
 0.57
 0.43

3
 0.55
 0.00
 0.45

3
 1.00
 0.00
 0.00

4
 0.54
 0.00
 0.46

4
 0.28
 0.38
 0.34

5
 0.57
 0.43
 0.00

5
 1.00
 0.00
 0.00

6
 0.55
 0.45
 0.00

6
 0.31
 0.33
 0.37

7
 0.00
 0.68
 0.32

7
 0.37
 0.36
 0.27
Table 8
Bayesian I-optimal design for the artificial sweetener experiment, when κ ¼ 10.

Choice set x1 x2 x3
1
 0.00
 0.00
 1.00

1
 0.39
 0.01
 0.60

2
 0.51
 0.25
 0.24

2
 0.98
 0.00
 0.02

3
 0.00
 0.10
 0.90

3
 0.38
 0.26
 0.36

4
 0.20
 0.28
 0.53

4
 0.44
 0.55
 0.01

5
 0.27
 0.41
 0.32

5
 0.12
 0.00
 0.88

6
 0.00
 0.00
 1.00

6
 0.01
 0.41
 0.58

7
 0.00
 0.96
 0.04

7
 0.27
 0.52
 0.21
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Table 9

Bayesian D-optimal design for the artificial sweetener experiment, when κ ¼ 30.

Choice set x1 x2 x3
12
1
 1.00
 0.00
 0.00

1
 0.68
 0.12
 0.20

2
 0.00
 0.00
 1.00

2
 0.16
 0.17
 0.67

3
 0.51
 0.00
 0.49

3
 0.37
 0.28
 0.35

4
 0.00
 1.00
 0.00

4
 0.00
 0.66
 0.34

5
 0.00
 0.51
 0.49

5
 0.29
 0.33
 0.38

6
 0.47
 0.53
 0.00

6
 0.41
 0.31
 0.28

7
 0.31
 0.69
 0.00

7
 0.00
 1.00
 0.00
Table 10
Bayesian I-optimal design for the artificial sweetener experiment, when κ ¼ 30.

Choice set x1 x2 x3
1
 0.10
 0.59
 0.31

1
 0.00
 0.32
 0.68

2
 0.38
 0.00
 0.62

2
 0.66
 0.08
 0.26

3
 0.24
 0.54
 0.22

3
 0.00
 0.81
 0.19

4
 0.80
 0.00
 0.20

4
 0.56
 0.25
 0.19

5
 0.06
 0.26
 0.68

5
 0.00
 0.00
 1.00

6
 0.00
 0.00
 1.00

6
 0.26
 0.07
 0.67

7
 0.44
 0.50
 0.06

7
 0.29
 0.36
 0.35
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