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A B S T R A C T   

Many food products involve mixtures of ingredients, where the mixtures can be expressed as combinations of 
ingredient proportions. In many cases, the quality and the consumer preference may also depend on the way in 
which the mixtures are processed. The processing is generally defined by the settings of one or more process 
variables. Experimental designs studying the joint impact of the mixture ingredient proportions and the settings 
of the process variables are called mixture-process variable experiments. In this article, we show how to combine 
mixture-process variable experiments and discrete choice experiments, to quantify and model consumer pref-
erences for food products that can be viewed as processed mixtures. First, we describe the modeling of data from 
such combined experiments. Next, we describe how to generate D- and I-optimal designs for choice experiments 
involving mixtures and process variables, and we compare the two kinds of designs using two examples.   

1. Introduction 

As pointed out in the review paper on the state of the art of discrete 
choice experiments in food research by Lizin et al. (2022), there has 
been a steady increase in the number of publications on the use of 
discrete choice experiments concerning food since 2000. A large number 
of discrete choice experiments in these papers deal with food safety or 
safety risks, origin or traceability, health or nutrition, biotechnology or 
genetic modification and animal welfare. The product categories mainly 
involved meat (beef, pork, poultry, and processed meat products), 
organic foods, functional foods and foods with nutrition or health 
claims. In recent years, alternatives to conventional meat received 
increasing attention. Lizin et al. (2022) also mention that a limited 
number of choice experiments in published papers were concerned with 
wine, olive oil, eggs and vegetables. 

Despite the fact that many food products involve mixtures of in-
gredients, publications concerning food-related choice experiments with 
mixtures are scarce. The first known application of a discrete choice 
experiment concerning mixtures was published by Courcoux and 
Séménou (1997), who modeled the preferences for cocktails involving 
different proportions of mango juice, lime juice, and blackcurrant syrup. 
Goos and Hamidouche (2019) defined a way to combine Scheffé models 
for data from mixture experiments with the logit type models typically 
used for choice experiments, and presented an alternative analysis of the 
data from Courcoux and Séménou (1997). Ruseckaite, Goos, and Fok 
(2017) and Becerra and Goos (2021) demonstrated how D- and I-optimal 
designs can be generated for choice experiments with mixtures, applied 

their work to the cocktail experiment and used an additional example 
concerning a sports drink. 

As witnessed by many of the examples in Cornell (2002), the quality 
of food products involving mixtures of ingredients often also depends on 
characteristics unrelated to the composition of the mixture. For 
example, the firmness of a fish patty depends not only on the types of fish 
used, but also on baking temperature, baking time, and frying time. The 
color, aroma, taste, texture and mouthfeel of pastillas de leche, a popular 
Filipino candy, depend on baking time and temperature in addition to 
mixture ingredients such as cornstarch, flour, glucose, sugar and milk 
(Apellado-Buenaventura & Valmorida, 2021). The aroma, hardness, 
crispness, color and fracture force of apple biscuits are affected by the 
mixture ingredients and the microwave blanching of the apples (Skaltsi, 
Marinopoulou, Poriazi, Petridis, & Papageorgiou, 2022). In the general 
literature on mixture experiments, variables such as baking tempera-
ture, baking time, frying time, serving temperature, and microwave 
blanching are typically called process variables (Goos & Jones, 2011). 

The fact that the quality of food products involving mixtures depends 
on the settings of such process variables implies that consumer prefer-
ences for these kinds of products will also be impacted by the process 
variables’ settings. For this reason, in this article, we develop the 
methodology required to perform discrete choice experiments involving 
mixtures as well as process variables. First, we present a parsimonious 
model for data from choice experiments with mixture and process var-
iables. Next, we discuss how to generate D- and I-optimal designs for 
such choice experiments. We discuss D-optimal designs because the D- 
optimality criterion is the most popular criterion for designing choice 
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experiments; and I-optimal designs because they focus on precise pre-
dictions and precise predictions are helpful to find the optimal mixture 
formulation in combination with optimal settings for the process 
variables. 

The rest of the paper is organized as follows. In Section 2, we 
introduce the most often used models for mixture experiments with 
process variables, the multinomial logit model for choice data and the 
combination of these two to model choice data concerning mixtures and 
process variables. In Section 3, we discuss the two most commonly used 
metrics to measure the quality of experimental designs. In Section 4, we 
present some of our computational results and provide example designs 
for two choice experiments involving a mixture and one or more process 
variables. Finally, in Section 5, we summarize our work and sketch 
possible directions for future research. 

2. Models 

In this section, we introduce the most commonly used models for 
data from mixture experiments with process variables as well as the 
multinomial logit model for choice data, and explain how to combine 
the two models for data from choice experiments involving mixtures and 
process variables. 

2.1. Models for data from mixture experiments including process 
variables 

Mixture experiments involve two or more ingredients and a response 
variable that depends only on the relative proportions of the ingredients 
in the mixture. Each mixture is described as a combination of q ingre-
dient proportions, with the constraint that these proportions sum up to 
one. Due to this constraint, a classical regression model involving an 
intercept and linear terms in the ingredient proportions exhibits perfect 
collinearity. Therefore, researchers must use dedicated regression 
models when analyzing data from mixture experiments. The most 
commonly used family of models for data from mixture experiments is 
the Scheffé family (Scheffé, 1958; Scheffé, 1963). The most popular 
Scheffé models are the first-order, second-order, and special-cubic 
models. 

Denoting the response in a traditional mixture experiment with a 
continuous outcome by Y and the q ingredient proportions by x1,x2,…,

xq, with xi⩾0 and 
∑q

i=1xi = 1, the first-order Scheffé model is 

Y =
∑q

i=1
βixi + ε. (1) 

The second-order Scheffé model is 

Y =
∑q

i=1
βixi +

∑q− 1

i=1

∑q

j=i+1
βijxixj + ε, (2)  

and, finally, the special-cubic Scheffé model is 

Y =
∑q

i=1
βixi +

∑q− 1

i=1

∑q

j=i+1
βijxixj +

∑q− 2

i=1

∑q− 1

j=i+1

∑q

k=j+1
βijkxixjxk + ε. (3) 

In all three cases, ε denotes the error term, which, for continuous 
outcomes, is typically assumed to be normally distributed. 

In certain experiments involving mixtures, additional factors that 
might affect the response are studied as well. Generally, these factors 
describe how the mixture is processed (where the word ‘processed’ 
should be interpreted in a broad sense). These additional factors are 
therefore referred to as process variables, and the resulting experiments 
are called mixture-process variable experiments. For instance, a dough 

needs to be baked at a certain temperature for a certain time, while the 
cocktails from the example in Section 4.1 need to be cooled to a certain 
temperature before being served, and the fish patties from the example 
in Section 4.2 are cooked and fried for a specific time at a specific 
temperature. 

Models that involve q mixture ingredients and r process variables can 
be obtained by combining Scheffé models for the ingredient proportions 
with response surface models for the process variables (Cornell & Gor-
man, 1984; Cornell, 1988; Kowalski, Cornell, & Geoffrey Vining, 2000; 
Goos & Jones, 2011). For example, consider the second-order Scheffé 
model in Eq. (2) for q ingredients x1, x2,…, xq and a main-effects-plus- 
two-factor-interaction model for r process variables z1, z2,…, zr 
defined as 

Y = α0 +
∑r

k=1
αkzk +

∑r− 1

k=1

∑r

l=k+1
αklzkzl + ε. (4) 

One combined model crosses the terms in Eq. (2) with each of those 
in Eq. (4): 

Y =
∑q

i=1
βixi +

∑q− 1

i=1

∑q

j=i+1
βijxixj +

∑q

i=1

∑r

k=1
γikxizk +

∑q

i=1

∑r− 1

k=1

∑r

l=k+1
γiklxizkzl

+
∑q− 1

i=1

∑q

j=i+1

∑r

k=1
δijkxixjzk +

∑q− 1

i=1

∑q

j=i+1

∑r− 1

k=1

∑r

l=k+1
δijklxixjzkzl + ε.

(5) 

This model allows the effects of both the ingredient proportions and 
process variables to jointly affect the response variable. In other words, 
the model allows the effects of the process variables to depend on the 
ingredient proportions and the effects of the ingredient proportions to 
depend on the process variables. The combined model in Eq. (5) does not 
include any main effects of the process variables z1,…,zr. This is because 
their inclusion would result in an inestimable model due to perfect 
collinearity. In the event that the effects of the process variables do not 
depend on the ingredient proportions, all γik as well as all γikl in the 
combined model are equal and all δijk and all δijkl are zero. In such event, 
the model simplifies to 

Y =
∑q

i=1
βixi +

∑q− 1

i=1

∑q

j=i+1
βijxixj +

∑r

k=1
αkzk +

∑r− 1

k=1

∑r

l=k+1
αklzkzl + ε. (6) 

This alternative model also combines the models in Eqs. (2) and (4), 
but without crossing any of the terms. Depending on the application, it 
may be necessary to extend the above models by including cubic terms 
involving the mixture ingredient proportions (as in the special-cubic 
Scheffé model in Eq. (3)) or quadratic terms in the process variables. 
An example of such an extended model would be 

Y =
∑q

i=1
βixi +

∑q− 1

i=1

∑q

j=i+1
βijxixj +

∑q− 2

i=1

∑q− 1

j=i+1

∑q

k=j+1
βijkxixjxk +

∑q

i=1

∑r

k=1
γikxizk

+
∑q

i=1

∑r− 1

k=1

∑r

l=k+1
γiklxizkzl +

∑q− 1

i=1

∑q

j=i+1

∑r

k=1
δijkxixjzk +

∑q− 1

i=1

∑q

j=i+1

∑r− 1

k=1

×
∑r

l=k+1
δijklxixjzkzl +

∑r

i=1
αiz2

i + ε.

(7) 

A problem with the combined model in Eq. (5) is that its number of 
parameters quickly increases with the number of mixture ingredients 
and process variables: for q mixture ingredients and r process variables, 
the total number of parameters is [q + q(q − 1)/2] × [1 + r + r(r − 1)/2]. 
The extended model in Eq. (7) even involves q(q − 1)(q − 2)/6+r extra 
parameters. In contrast, the model described in Eq. (6) involves a 
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number of parameters that is as low as [q + q(q − 1)/2] + [r + r(r − 1)/2]. 
The drawback of the latter model is that it may not be realistic. For this 
reason, Kowalski et al. (2000) suggest a compromise model involving 
q+q(q − 1)/2+qr+r(r − 1)/2+r terms: 

Y =
∑q

k=1
γ0

kxk +
∑q− 1

k=1

∑q

l=k+1
γ0

klxkxl +
∑r

i=1

∑q

k=1
γi

kxkzi +
∑r− 1

i=1

×
∑r

j=i+1
αijzizj +

∑r

i=1
αiz2

i + ε. (8) 

Because this compromise model strikes a balance between the overly 
complex models in Eqs. (5) and (7) and the overly simple model in Eq. 
(6), we use it as our starting point for computing optimal designs for 
choice experiments involving mixtures and process variables in the 
remainder of this paper. 

2.2. Multinomial logit model for choice data 

The multinomial logit model builds on random-utility theory and 
assumes that a respondent in a choice experiment faces S choice sets 
involving J alternatives. The model assumes that, within each choice set 
s ∈ {1,…, S}, each respondent chooses the alternative that has the 
highest perceived utility. Therefore, the probability that a respondent 
chooses alternative j ∈ {1,…, J} in choice set s, denoted by pjs, is the 
probability that the perceived utility of alternative j in choice set s, 
denoted by Ujs, is larger than that of the other alternatives in the choice 
set: 

pjs = P
[
Ujs > max(U1s,…,Uj− 1,s,Uj+1,s,…,UJs)

]
.

Since, generally, each alternative in a choice set has a set of 
observable attributes that characterize it, the perceived utility Ujs can be 
expressed as 

Ujs = f T(ajs)θ+ εjs, (9)  

where ajs is the vector that contains the attributes corresponding to 
alternative j in choice set s, f(ajs) represents the model expansion of this 
attribute vector, and θ is the vector containing the model parameters. 
The model parameters contained within θ express the preferences of the 
respondents for the alternatives’ attributes. In the multinomial logit 
model, the error terms εjs are assumed to be independent and identically 
Gumbel distributed. The Gumbel distribution is also known as the 
generalized extreme value distribution of type I and as the log-Weibull 
distribution. As a result of the distributional assumption, it can be 
shown that 

pjs =
exp
[
f T(ajs)θ

]

∑J

t=1
exp[f T(ats)θ]

. (10)  

2.3. Model for choice data concerning mixtures and process variables 

In this paper, we focus on choice experiments involving mixtures and 
process variables. Therefore, we assume that the attributes of the al-
ternatives in the experiments are the proportions of the ingredients of a 
mixture and the settings of the process variables. Consequently, we as-
sume that the attribute vector ajs from Eq. (9) contains the q ingredient 
proportions x1, x2,…, xq and the r process variables z1,…, zr of the j-th 
alternative in choice set s and that f(ajs) represents the model expansion 
of these proportions and process variables. As a proof of concept, in this 
paper we base the polynomial expansion f(ajs) on a model combining a 

second-order Scheffé model for the q ingredients in the mixture with a 
main-effects-plus-two-factor-interaction model for the r process vari-
ables, as in Eq. (8). 

When starting from the main-effects-plus-two-factor-interaction 
model in Eq. (8), the most natural thing to do would be to write the 
perceived utility Ujs of alternative j in choice set s as 

Ujs =
∑q

i=1
γ0

i xijs +
∑q− 1

i=1

∑q

k=i+1
γ0

ikxijsxkjs +
∑r

i=1

∑q

k=1
γi

kxkjszijs +
∑r− 1

i=1

×
∑r

k=i+1
αikzijszkjs +

∑r

i=1
αiz2

ijs + εjs,

where xijs denotes the proportion of the i-th mixture ingredient in 
alternative j from choice set s, and zkjs denotes the setting of the k-th 
process variable for alternative j in choice set s, and the error terms εjs 

are assumed to be independent and identically Gumbel distributed. 
However, as explained by Ruseckaite et al. (2017),oos and Hamidouche 
(2019), and Becerra and Goos (2021), due to the constraint that the 
ingredient proportions sum up to one, this leads to an inestimable 
multinomial logit model. As a consequence of the constraint, we can 
rewrite xqjs as 1 − x1js − … − xq− 1,js and Ujs as 

Ujs =
∑q− 1

i=1
γ0

i xijs + γ0
q(1 − x1js − … − xq− 1,j,s) +

∑q− 1

i=1

∑q

k=i+1
γ0

ikxijsxkjs +
∑r

i=1

×
∑q

k=1
γi

kxkjszijs +
∑r− 1

i=1

∑r

k=i+1
αikzijszkjs +

∑r

i=1
αiz2

ijs + εjs

= γ0
q +

∑q− 1

i=1
(γ0

i − γ0
q)xijs +

∑q− 1

i=1

∑q

k=i+1
γ0

ikxijsxkjs +
∑r

i=1

∑q

k=1
γi

kxkjszijs +
∑r− 1

i=1

×
∑r

k=i+1
αikzijszkjs +

∑r

i=1
αiz2

ijs + εjs.

This final expression for the perceived utility Ujs involves a constant, 
γ0

q . Since the multinomial logit model only takes into account differences 
in utility, that constant causes the model to be ill-defined and, hence, 
inestimable. This can be circumvented by dropping γ0

q , defining the 
parameters γ0∗

i = γ0
i − γ0

q for i ∈ {1,…, q − 1}, and using the following 
expression for the perceived utility: 

Ujs =
∑q− 1

i=1
γ0∗

i xijs +
∑q− 1

i=1

∑q

k=i+1
γ0

ikxijsxkjs +
∑r

i=1

∑q

k=1
γi

kxkjszijs +
∑r− 1

i=1

×
∑r

k=i+1
αikzijszkjs +

∑r

i=1
αiz2

ijs + εjs. (11) 

The parameter vector θ then becomes 

θ=
(

γ0∗
1 ,γ0∗

2 ,…,γ0∗
q− 1,γ

0
1,2,…,γ0

q− 1,q,γ
1
1,γ

1
2,…,γ1

q,γ
2
q,…,γr

q,α1,2,…,αr− 1,r,α1,…,αr

)T
.

This vector has q+q(q− 1)
2 +qr+r(r− 1)

2 +r− 1 elements. 

3. Optimal design criteria 

In the literature on the optimal design of choice experiments in 
general, several criteria have been studied. Kessels, Goos, and Vande-
broek (2006) elaborate on the D-, I-, A-, and G-optimality criteria for the 
multinomial logit model and compare the performances of the resulting 
choice designs. However, in the literature on optimal design of choice 
experiments with mixtures, the two optimality metrics that have been 
studied are D-optimality and I-optimality. In this section, we extend the 
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D- and I-optimality criteria to cope with the multinomial logit model for 
choice experiments involving mixtures as well as process variables. 

3.1. Information matrix 

In order to create D- and I-optimal experimental designs, we need to 
compute a design’s information matrix corresponding to the model 
under investigation. For the multinomial logit model, the information 
matrix depends on the unknown parameter vector θ through the choice 
probabilities pjs defined in Equation (10). This is typical for models that 
are not linear in the parameters, such as discrete choice models, and it 
implies that prior information is needed to find optimal designs. This 
information can be provided in the form of a point estimate, or in the 
form of a prior distribution (Atkinson & Haines, 1996; Kessels et al., 
2006; Ruseckaite et al., 2017; Becerra & Goos, 2021). The use of a point 
estimate leads to so-called locally optimal designs, which have the 
problem that they may perform poorly for values of the parameter 
vector θ for which they were not optimized. This weakness of locally 
optimal designs is, of course, highly relevant given that the true values of 
the model parameters are unknown. An alternative is to use a prior 
distribution, which leads to so-called Bayesian optimal designs. In 
addition to taking into account prior information, Bayesian optimal 
designs also take into account the uncertainty about the parameter 
vector θ through the use of a prior distribution π(θ) that summarizes the 
prior knowledge concerning the parameter vector θ. 

The information matrix I(X, θ) for the multinomial logit model is the 
sum of the information matrices of each of the S choice sets (Kessels 
et al., 2006): 

I(X, θ) =
∑S

s=1
XT

s (Ps − pspT
s )Xs,

with ps = (p1s,…, pJs)
T
,Ps = diag(ps),XT

s = [f(a1s), f(a2s),…, f(aJs)] the 
model matrix containing the model expansions of the attribute levels of 
all J alternatives in choice set s, and X = [X1,…,XS] the model matrix for 
all S choice sets. The inverse of the information matrix is the asymptotic 
variance–covariance matrix of the maximum likelihood estimates of the 
parameter vector θ. 

3.2. D-optimal designs 

For a model matrix X and prior parameter vector θ, the D-optimality 
criterion can be defined as 

D =
[
det
(
I− 1(X, θ)

) ]1
m, (12)  

where I− 1(X, θ) is the inverse of the information matrix and m is the 
number of parameters in the model. A D-optimal design minimizes the 
D -value. Since the D-optimal design approach focuses on minimizing 
the generalized variance of the maximum likelihood estimators of the 
model parameters, it can be viewed as an estimation-based approach. D- 
optimality is arguably the most traditional metric used in the literature 
on the design of choice experiments (Bliemer, Rose, & Hensher, 2009; 
Bliemer & Rose, 2010; Bliemer & Rose, 2011; Burgess & Street, 2005; 
Grasshoff, Großmann, Holling, & Schwabe, 2003; Kessels, Jones, Goos, 
& Vandebroek, 2011). 

The definition in Eq. (12) uses a prior point estimate of the parameter 
vector θ. However, as we mentioned above, a prior distribution can also 
be used to obtain a Bayesian D-optimal design. The Bayesian D-opti-
mality criterion is generally defined in the literature as the average of 
the D-optimality criterion over the prior distribution (Bliemer et al., 

2009; Bliemer & Rose, 2011; Kessels et al., 2011). Therefore, following 
Ruseckaite et al. (2017) and Becerra and Goos (2021), we define the 
Bayesian D-optimality criterion for the multinomial logit model as 

D B =

∫

Rm

[
det
(
I− 1(X, θ)

) ]1
mπ(θ)dθ, (13)  

where π(θ) is the prior distribution of θ. Note that we call a design that 
minimizes the expression in Eq. (13) a Bayesian D-optimal design, even 
though the criterion does not take into account the posterior distribution 
and some authors therefore prefer to call such a design a pseudo- 
Bayesian design (e.g., Ryan, Drovandi, McGree, & Pettitt (2016)). 

3.3. I-optimal designs 

The I-optimality criterion is generally defined as the average pre-
diction variance over the experimental region, which is why it can be 
seen as a prediction-oriented criterion: it focuses on getting precise 
predictions with the estimated statistical model. I-optimality is also 
sometimes called V-optimality (Goos & Syafitri, 2014; Kessels et al., 
2006). 

When using choice models, there are two ways in which we can 
define I-optimality. If the goal is to predict choice probabilities, the I- 
optimality criterion is the average variance of the predicted choice 
probabilities. If the goal is to predict perceived utilities, the I-optimality 
criterion is the average variance of the predicted utilities. Becerra and 
Goos (2021) introduced a computationally efficient definition for I- 
optimal designs for choice experiments focused on the perceived utili-
ties. This is the definition we will use here too. Under this definition, the 
I-optimality criterion is 

I = tr
[
I− 1(X, θ)W

]
, (14)  

where I− 1(X, θ) again denotes the inverse of the information matrix for 
model matrix X and prior parameter vector θ. The matrix W is the mo-
ments matrix, defined as 

W =

∫

χ
f(ajs)f T(ajs)dajs, (15)  

with f(ajs) again the model expansion of attribute vector ajs and χ the 
experimental region which combines the (q − 1)-dimensional simplex 
Sq− 1 for the ingredient proportions and an r-dimensional hyperrectangle 
for the possible settings of the process variables. 

To compute the moments matrix W for the model described in Eq. 
(11), we first need to compute the matrix f(ajs)f T(ajs), which has ele-
ments of the form 
(
∏q

k=1
xnk

k

)(
∏r

l=1
zml

l

)

,

for some nk,ml ∈ N, k ∈ {1,…, q} and l ∈ {1,…, r}. Hence, each element 
of the moments matrix is of the form 
∫

χ

(
∏q

k=1
xnk

k

)(
∏r

l=1
zml

l

)

dx1…dxqdz1…dzr ,

which can be separated in two parts: one corresponding to the process 
variables and one part corresponding to the ingredient proportions. 
Therefore, assuming that the r process variables take values from the 
intervals [a1, b1],[a2, b2], …, [ar, br], the i-th element in the j-th column of 
the moments matrix, denoted by Wij, can be calculated as 
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Wij =

∫ b1

a1

∫ b2

a2

…
∫ br

ar

∏r

l=1
zml

l

(∫

Sq− 1

∏q

k=1
xnk

k dx1…dxq− 1

)

dz1…dzr,

=

∫ b1

a1

∫ b2

a2

…
∫ br

ar

∏r

l=1
zml

l

⎛

⎜
⎜
⎝

∏q
k=1 nk!

(q − 1 +
∑q

k=1
nk)!

⎞

⎟
⎟
⎠dz1…dzr,

=

(
∏r

l=1

bml+1
l − aml+1

l

ml + 1

)
⎛

⎜
⎜
⎝

∏q
k=1 nk!

(q − 1 +
∑q

k=1
nk)!

⎞

⎟
⎟
⎠.

If we adopt the convention that the settings of the process variables 
are rescaled to the [ − 1,+1] interval, the hyperrectangle becomes a 
hypercube and the expression for Wij can be simplified to 

Wij =

(
∏r

l=1

1ml+1 − (− 1)ml+1

ml + 1

)
⎛

⎜
⎜
⎝

∏q
k=1 nk!

(q − 1 +
∑q

k=1
nk)!

⎞

⎟
⎟
⎠. (16) 

In the event one of the ml values is odd, 1ml+1 − (− 1)ml+1 is zero and 
Wij also becomes zero. In the event all ml values are even, 
1ml+1 − (− 1)ml+1 is equal to 2. 

So, for example, in the case where there are three mixture variables 
and one process variable (i.e., q = 3 and r = 1) the model expansion 
f(ajs) is (x1, x2, x1x2, x1x3, x2x3, x1z, x2z, x3z, z2)

T. Multiplying f(ajs) by 
its transpose yields the matrix   

To illustrate how W11 is calculated, we start from the first element in 
the first row and the first column in this matrix, i.e., x2

1. This term is the 
square of the first mixture ingredient proportion. Hence, its exponent n1 
is equal to 2. The other two mixture variables, x2 and x3, are not present, 
meaning their exponents n2 and n3 are 0. Additionally, this element does 
not involve any process variables, meaning m1 = 0. Using Eq. (16), we 
obtain 

W11 =

(
1m1+1 − (− 1)m1+1

m1 + 1

)(
n1!× n2!× n3!

(3 − 1 + n1 + n2 + n3)!

)

=

(
10+1 − (− 1)0+1

0 + 1

)(
2!× 0!× 0!

(3 − 1 + 2 + 0 + 0)!

)

=

(
2
1

)(
2
24

)

=
1
6
.

As another illustration, we calculate W99. To this end, we start from 
the element in the last row and the last column of f(ajs)fT(ajs), i.e., z4. 
This term is the process variable raised to the 4-th power. Hence, m1 =

4. None of the mixture variables are present, meaning that their expo-

nents are all 0, and thus n1 = n2 = n3 = 0. So, using Eq. (16) again, we 
obtain 

W99 =

(
1m1+1 − (− 1)m1+1

m1 + 1

)(
n1!× n2!× n3!

(3 − 1 + n1 + n2 + n3)!

)

=

(
14+1 − (− 1)4+1

4 + 1

)(
0!× 0!× 0!

(3 − 1 + 0 + 0 + 0)!

)

=

(
2
5

)(
1
2

)

=
1
5
.

Following this process for each of the elements in the matrix 
f(ajs)fT(ajs), we obtain the full moments matrix, 

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
6

1
12

1
30

1
30

1
60

0 0 0
1
9

1
12

1
6

1
30

1
60

1
30

0 0 0
1
9

1
30

1
30

1
90

1
180

1
180

0 0 0
1
36

1
30

1
60

1
180

1
90

1
180

0 0 0
1
36

1
60

1
30

1
180

1
180

1
90

0 0 0
1
36

0 0 0 0 0
1

18
1
36

1
36

0

0 0 0 0 0
1

36
1
18

1
36

0

0 0 0 0 0
1

36
1
36

1
18

0

1
9

1
9

1
36

1
36

1
36

0 0 0
1
5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As with the D-optimality criterion, we define the Bayesian I-opti-
mality criterion as the I-optimality criterion averaged over the prior 
distribution π(θ) of the parameter vector θ: 

I B =

∫

Rm
tr
[
I− 1(X, θ)W

]
π(θ)dθ. (17)  

3.4. Numerical approximation to optimality criteria 

The Bayesian optimality criteria must be approximated numerically 
because there is no closed-form solution to the integrals in Eqs. (13) and 
(17). This is usually done by using random or systematic draws from the 
prior distribution π(θ) (Kessels, Jones, Goos, & Vandebroek, 2009; 
Ruseckaite et al., 2017; Train, 2009; Yu, Goos, & Vandebroek, 2010; 
Becerra & Goos, 2021). In our work, we utilize Halton draws from the 
prior distribution because they reduce the variance of the approximation 
to the integral and provide a good coverage of the entire domain of the 
prior distribution (Train, 2009; Yu et al., 2010).Moreover, Bhat (2001) 

f(ajs)f T(ajs) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x2
1 x1x2 x2

1x2 x2
1x3 x1x2x3 x2

1z x1x2z x1x3z x1z2

x1x2 x2
2 x1x2

2 x1x2x3 x2
2x3 x1x2z x2

2z x2x3z x2z2

x2
1x2 x1x2

2 x2
1x2

2 x2
1x2x3 x1x2

2x3 x2
1x2z x1x2

2z x1x2x3z x1x2z2

x2
1x3 x1x2x3 x2

1x2x3 x2
1x2

3 x1x2x2
3 x2

1x3z x1x2x3z x1x2
3z x1x3z2

x1x2x3 x2
2x3 x1x2

2x3 x1x2x2
3 x2

2x2
3 x1x2x3z x2

2x3z x2x2
3z x2x3z2

x2
1z x1x2z x2

1x2z x2
1x3z x1x2x3z x2

1z2 x1x2z2 x1x3z2 x1z3

x1x2z x2
2z x1x2

2z x1x2x3z x2
2x3z x1x2z2 x2

2z2 x2x3z2 x2z3

x1x3z x2x3z x1x2x3z x1x2
3z x2x2

3z x1x3z2 x2x3z2 x2
3z2 x3z3

x1z2 x2z2 x1x2z2 x1x3z2 x2x3z2 x1z3 x2z3 x3z3 z4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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verified that around 100 Halton draws provide about the same level of 
accuracy as 2000 pseudo-random draws in the context of a 5-dimen-
sional approximation to the likelihood of a mixed multinomial model. 
Yu et al. (2010) showed that Halton draws also produce good approxi-
mations of integrals with higher dimensions in the context of optimal 
design for choice experiments. Denoting the number of Halton draws by 
R and each individual draw by θ(i), our approximations for Eqs. (13) and 
(17) are 

D B ≈
1
R

∑R

i=1

[
det
(
I− 1(X, θ(i))

) ]1
m
, (18)  

and 

I B ≈
1
R
∑R

i=1
tr
[
I− 1(X, θ(i))W

]
, (19)  

respectively. 
Like Ruseckaite et al. (2017) and Becerra and Goos (2021), we used 

R = 128 Halton draws from a multivariate normal prior distribution in 
both of our examples in the next section. We verified numerically that 
this number of draws provided a sufficiently good approximation of the 
Bayesian optimality criteria for the numbers of parameters in the models 
used in the two examples. 

3.5. Construction of D- and I-optimal designs 

To compute our optimal designs, we used a coordinate-exchange 
algorithm (Meyer & Nachtsheim, 1995; Goos & Jones, 2011). A 
coordinate-exchange algorithm was also used by Kessels et al. (2009), 
useckaite et al. (2017), and Becerra and Goos (2021) in the context of 
choice experimentation. Becerra and Goos (2021) implemented their 
algorithm in the R programming language (R Core Team, 2017) with the 
aid of several existing R packages (Hamilton & Ferry, 2018; Wickham, 
2016; Wickham, Hester, & Chang, 2020; Eddelbuettel & François, 2011; 
Eddelbuettel, 2013; Eddelbuettel & Balamuta, 2018; Eddelbuettel & 
Sanderson, 2014; Henry & Wickham, 2020), and created a package 
called opdesmixr, available at https://github.com/mario-
becerra/opdesmixr, which allows the computation of locally D- 
optimal, Bayesian D-optimal, locally I-optimal, and Bayesian I-optimal 
designs for first-order, second-order, and special-cubic Scheffé models. 
We extended the package and added the functionality to compute locally 
D-optimal, Bayesian D-optimal, locally I-optimal and Bayesian I-optimal 
designs for the model presented in Eq. (11), involving mixture ingre-
dient proportions as well as process variables. 

The coordinate-exchange algorithm we implemented starts from a 
random initial design, and begins by optimizing the first ingredient 
proportion of the first alternative within the first choice set, followed by 
the second ingredient proportion of the first alternative within the first 
choice set, and so on, until all q ingredient proportions have been 
optimized. Then, it continues with each of the r process variables. The 
algorithm then repeats this process for each alternative in each choice 
set in the design. The whole process is repeated until the design can no 
longer be improved or until a maximum number of iterations has been 
reached. At each step of the coordinate-exchange algorithm, we seek the 
optimal value of every individual ingredient proportion xijs or process 
variable setting zijs.This is a univariate optimization problem which can 
be solved in a straightforward way using Brent’s univariate optimization 
method (Brent, 1973). Every time Brent’s univariate optimization 
method is invoked during the course of the coordinate-exchange algo-
rithm, the Bayesian D- or I-optimality criterion has to be evaluated. 
Despite the efficient approximation of these criteria using Halton draws, 
this renders the coordinate-exchange algorithm for choice experiments 
computationally intensive. 

As indicated in Piepel, Cooley, and Jones (2005), Goos and Jones 
(2011), Ruseckaite et al. (2017),ecerra and Goos (2021), the coordinate- 

exchange algorithm must be modified to deal with mixtures. Since the 
mixture proportions must sum up to one, they cannot be independently 
changed. As a matter of fact, a change in one proportion requires a 
change in at least one other proportion. This dependency is solved by 
using the so-called Cox effect direction (Cornell, 2002; Goos & Jones, 
2011; Piepel et al., 2005). After a change of one of the ingredient pro-
portions, xijs, to xijs + Δ, we modify the other q − 1 proportions as 
follows: 

xnew
kjs =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(

1 −
Δ

1 − xijs

)

xkjs if xijs ∕= 1,

1 − (xijs + Δ)

q − 1
if xijs = 1.

4. Results 

In this section, as proofs of concept, we present D- and I-optimal 
designs for two example choice experiments involving a mixture and one 
or more process variables. In both examples, we use a normal prior 
distribution, which is the most commonly used prior in the literature on 
the optimal design of choice experiments. The first example involves a 
cocktail tasting experiment and was inspired by Courcoux and Séménou 
(1997), while the second example involves a fish patty experiment. The 
inspiration for this example came from Cornell (2002); Cornell and 
Gorman, 1984; Cornell, 1988 and Goos (2022). 

4.1. Cocktail example 

Courcoux and Séménou (1997) discussed an experiment in which 
cocktails involving mango juice, blackcurrant syrup, and lemon juice 
were tasted. The experiment was conducted by asking respondents to 
taste different pairs of cocktails and indicating their preferred one in 
each pair. Ruseckaite et al. (2017) and Becerra and Goos (2021) revis-
ited this experiment, computed prior distributions for the parameter 
vector θ of a special-cubic Scheffé model, and created optimal experi-
mental designs using this prior. 

In the experiment, Courcoux and Séménou (1997) imposed lower 
bounds of 0.3, 0.15 and 0.1 on the three ingredient proportions. To deal 
with this issue and to be able to use our implementation of the 
coordinate-exchange algorithm, like Ruseckaite et al. (2017) and 
Becerra and Goos (2021), we expressed the mixtures defining the 
cocktails in terms of so-called pseudocomponents x1, x2, and x3. These 
pseudocomponents are defined such that they take a minimum value of 
0 and a maximum value of 1, and sum up to one. The conversion of the 
true ingredient proportions into pseudocomponent proportions is done 
via the formula xi = (ai − Li)/(1 − L), where Li denotes the lower bound 
of ingredient i, ai denotes the true ingredient proportion, and L is the 
sum of the lower bounds for all q ingredient proportions. 

In September 2019, students at KU Leuven replicated the experiment 
by asking 35 respondents to taste cocktails made with mango juice, 
blackcurrant syrup, and lemon juice and say which one they preferred. 
Each respondent tasted four choice sets of two cocktails. This experi-
ment, as the original in Courcoux and Séménou (1997), did not have 
process variables. Nonetheless, since the preference for a cocktail may 
depend on the temperature at which it is served, we used this data and 
created additional simulated responses with a synthetic process variable 
related to temperature to obtain a prior normal distribution for 
parameter vector θ using the model in Eq. (11).We then fitted a multi-
nomial logit model to these data, which gave us an estimated mean and 
variance–covariance-matrix, which in turn we used to construct the 
prior distribution in our cocktail example. Our prior mean vector is θ =

(7.562,0.907,5.109,14.573, 17.1806,19.2705,19.2705,19.2705, 0)T. 
This means that the utility of alternative j in choice set s was modeled as 
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Fig. 1. Bayesian D- and I-optimal designs produced by our coordinate-exchange algorithm for the cocktail experiment.  

Fig. 2. Distribution of the value of the process variable temperature in the Bayesian D- and I-optimal designs for the cocktail experiment.  

Fig. 3. Fraction of design space plot of our Bayesian D- and I-optimal designs for the cocktail experiment.  
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Ujs = 7.562x1js + 0.907x2js

+5.109x1jsx2js + 14.573x1jsx3js + 17.1806x2jsx3js

+19.2705x1jsz1js + 19.2705x2jsz1js + 19.2705x3jsz1js

+0z2
1js + εjs.

The prior variance–covariance matrix we used is Σ0 = diag(4,9,49,
36, 49, 900, 900, 900, 900).It must be noted that the variances in this 
matrix were rounded to the nearest integer from the estimated multi-
nomial logit model. With this prior distribution, we computed Bayesian 
D- and I-optimal designs using the coordinate-exchange algorithm dis-
cussed in Section 3.5. 

Our Bayesian D- and I-optimal designs are shown graphically in 
Fig. 1. In the figure, the mixtures in each of the 35 × 4 = 140 choice sets 
are presented in terms of the pseudocomponent proportions. The shade 
of blue of each dot denotes the level of process variable temperature for 
the corresponding mixture. Fig. 2 shows the distribution of the tem-
peratures selected for the alternatives in the 140 choice sets in each of 
the designs. 

In Fig. 1, it can be seen that the points in the I-optimal design are 
spread more evenly over the entire simplex compared to those of the D- 
optimal counterpart. This is consistent with the results of Becerra and 
Goos (2021) for choice experiments with mixtures in the absence of 
process variables. It is also worth pointing out that both designs use 
levels other than − 1 and +1 for the process variable temperature, even 
though the mean prior value for the quadratic effect of the process 
variable temperature is zero. 

Fig. 3 shows the fraction of design space plots of the two Bayesian 
optimal designs. These plots display the performance of the designs in 
terms of the prediction variance for each point in the experimental re-
gion or design space (Zahran, Anderson-Cook, & Myers, 2003). The 
horizontal axis corresponds to a fraction of the experimental region, 
while the vertical axis ranges from the minimum to the maximum pre-
diction variance over the entire experimental region (Goos & Jones, 
2011). A curve in a fraction of design space plot shows the prediction 
variances f T(x)I− 1(X, β)f(x) for a large number of random points 
selected from the experimental region, ordered from small to large. 
Ideally, all prediction variances are small throughout the entire exper-
imental region, in which case the curve in the fraction of design space 
plot is virtually flat. Another way of explaining the fraction of design 

space plot is to say that it is the cumulative distribution function of the 
prediction variances across the experimental region, but with the posi-
tions of the two axes swapped. 

The typical method to construct a fraction of design space plot for a 
given design is to randomly sample a large number of points M (e.g., 
10,000 points) inside the experimental region. Then, the prediction 
variance f T(x)I− 1(X, β)f(x) is calculated for each of these points, and all 
M prediction variances are sorted from smallest to largest to obtain the 
empirical cumulative distribution function of the prediction variances 
(Ozol-Godfrey, Anderson-Cook, & Montgomery, 2005; Goldfarb, 
Anderson-Cook, Borror, & Montgomery, 2004; Goos & Jones, 2011). If 
we denote the prediction variance of the i-th sampled point by vi, then 
the non-decreasing curve joining the M pairs (i/M, vi) forms the fraction 
of design space plot. A point i/M on the horizontal axis of the fraction of 
design space plot gives the proportion of the design space that has a 
prediction variance less than or equal to the corresponding value vi on 
the vertical axis (Smucker, Krzywinski, & Altman, 2018). In order to 
deal with the issue of the prediction variance depending on the unknown 
parameter vector, we computed prediction variances for 128 Halton 

draws from the prior distribution of the parameter vector θ and averaged 
the results. 

The main takeaway from Fig. 3 is that the prediction variance is 
much higher for the Bayesian D-optimal design than for its I-optimal 
counterpart. The median prediction variance for the Bayesian D-optimal 
design is about 21.6, while it is about 10.9 for the Bayesian I-optimal 
one. 

4.2. Fish patty example 

The second example we discuss involves a fish patty and was inspired 
by the work of Cornell (2002); Cornell and Gorman, 1984 and Cornell 
(1988); Goos (2022). In the original experiment, the interest was in the 
firmness of patties made with a mixture of three fish species: mullet, 
sheepshead, and croaker. These patties were subjected to different 
processing conditions: oven cooking temperature (375 or 425 degrees 
Fahrenheit), oven cooking time (25 or 40 min), and deep fat frying time 
(25 or 40 s). The first three variables are mixture variables and the last 
three are process variables. 

Since the original interest was in the firmness of the patty, no pref-
erence data is available to construct a normal prior distribution for our 
example. However, assuming firmness is proportional to utility, we used 
the original data and the model 

Y = γ0
1x1 + γ0

2x2 + γ0
3x2

+γ0
12x1x2 + γ0

13x1x3 + γ0
23x2x3

+γ1
1x1z1 + γ1

2x2z1 + γ1
3x3z1

+γ2
1x1z2 + γ2

2x2z2 + γ2
3x3z2

+γ3
1x1z3 + γ3

2x2z3 + γ3
3x3z3

+α12z1z2 + α13z1z3 + α23z2z3 + ε  

to obtain a prior point estimate for the parameter vector θ. This model is 
the same as the one in Eq. (8), but without the quadratic terms for the 
three process variables. The reason we did not include these quadratic 
effects is that, in the original experiment, the process variables were 
studied at two levels only. As a consequence, the quadratic effects were 
inestimable. We obtained the following estimate for the parameter 
vector   

Next, we transformed the parameter vector to the identified 
parameter space, as explained in Section 2.3. To this end, we computed 
γ0∗

1 = γ0
1 − γ0

3 = 2.864 − 2.003 = 0.861 and γ0∗
2 = γ0

2 − γ0
3 =

1.074 − 2.003 = − 0.929. As a result, our prior model for the utility of 
alternative j in choice set s in the fish patty example is 

Ujs = 0.861x1js − 0.929x2js

− 0.974x1jsx2js − 0.834x1jsx3js + 0.356x2jsx3js

+0.376x1jsz1js + 0.106x2jsz1js + 0.206x3jsz1js

+0.642x1jsz2js + 0.2x2jsz2js + 0.403x3jsz2js

− 0.078x1jsz3js − 0.087x2jsz3js − 0.01x3jsz3js

+0.027z1jsz2js + 0.001z1jsz3js − 0.008z2jsz3js

+0z2
1js + 0z2

2js + 0z2
3js + εjs.

The estimates of the parameters in the initial model were used as the 
means of a set of normal prior distributions with variance–covariance 
matrices of the form Σ0 = κI21, where κ is a positive scalar that controls 
the level of uncertainty and I21 is the identity matrix of size 21. A higher 

θT = (γ0
1, γ0

2, γ
0
3, γ0

12, γ0
13, γ0

23, γ1
1, γ1

2, γ
1
3, γ2

1, γ2
2, γ

2
3, γ3

1, γ3
2, γ

3
3, α12, α13, α23)

= (2.864, 1.074, 2.003, − 0.974, − 0.834, 0.356, 0.376, 0.106, 0.206, 0.642, 0.2, 0.403, − 0.078, − 0.087, − 0.01, 0.027, 0.001, − 0.008).
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Fig. 4. Bayesian D-optimal designs for the fish patty experiment. The four figures on the left show the mixture ingredient proportions, while the four figures on the 
right show the settings of the process variables. 
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Fig. 5. Bayesian I-optimal designs for the fish patty experiment. The four figures on the left show the mixture ingredient proportions, while the four figures on the 
right show the settings of the process variables. 
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value of κ indicates a higher level of uncertainty concerning the 
parameter values.This structure of variance–covariance gives us a sim-
ple way to study the impact of different levels of uncertainty expressed 
by the prior distribution on the final design. 

The variance–covariance matrix Σ0 corresponding to the initial 21- 
parameter model must then also be transformed to the identified 20- 
dimensional parameter space. This results in a new 20 × 20 prior var-
iance–covariance matrix 

Σ′
0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2κ κ 0 … 0 0
κ 2κ 0 … 0 0
0 0 κ … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … κ 0
0 0 0 … 0 κ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We computed Bayesian D- and I-optimal designs for the same κ 
values as Ruseckaite et al. (2017) and Becerra and Goos (2021), that is 
0.5, 5, 10 and 30. All of our Bayesian D- and I-optimal designs are shown 
graphically in Figs. 4 and 5. It can be seen that the spread in the points in 
the optimal designs increases with κ, and the spread is more pronounced 
for the Bayesian I-optimal designs than for the Bayesian D-optimal 
designs. 

Fig. 6 shows the fraction of design space plots for the Bayesian D- and 
I-optimal designs. For each value of κ, the D-optimal design has a much 
higher prediction variance than its I-optimal counterpart. Hence, the 
Bayesian I-optimal designs add substantial value in terms of precision of 
prediction when compared to Bayesian D-optimal designs. 

5. Discussion 

We introduced the theory for choice experiments involving mixtures 
and process variables, and embedded the Bayesian D- and I-optimality 
criteria in a coordinate-exchange algorithm for constructing optimal 
designs for this type of choice experiments. We also showed two 

examples in which the I-optimal designs perform substantially better 
than their D-optimal counterparts in terms of the variance of the pre-
dicted utility, which is something desirable because it is crucial to have 
precise predictions for any combination of ingredient proportions and 
process variables when optimizing the formulation of a mixture and the 
settings of the related process variables. 

We identified three possible extensions of our work. The first possi-
bility is inspired by a practical difficulty that arises when conducting 
choice experiments with mixtures with or without process variables. 
When the number of distinct mixtures appearing in the Bayesian optimal 
designs is large and the mixtures have to be tasted, it is logistically very 
complicated to perform the experiment. For instance, for a given num-
ber of tasters, organizing a choice experiment in which 40 distinct 
mixtures have to be tasted in perhaps 80 different choice sets is much 
harder to organize and perform than a choice experiment in which only 
20 distinct mixtures have to be tasted in 40 different choice sets. While 
the former experiment may be preferable from a statistical viewpoint, it 
may be practically infeasible. Therefore, it is valuable to develop an 
algorithm that finds optimal designs with mixtures and process variables 
with an upper bound on the number of distinct mixtures and/or an upper 
bound on the number of distinct choice sets, as well as an upper bound 
on the number of distinct settings and values that the process variables 
can take. 

Second, we focused on the multinomial logit model, which assumes 
that there is homogeneity in the preferences of the respondents. This 
works well in many practical scenarios, but it might be an unrealistic 
assumption, as demonstrated by Courcoux and Séménou (1997) and 
Goos and Hamidouche (2019). Hence, it would make sense to extend the 
algorithms presented here to other types of choice models that take into 
account the possible presence of consumer heterogeneity, such as the 
mixed logit model and the latent class choice model. 

A third topic for future research would be to modify our coordinate- 
exchange algorithm, so that it can also cope with experimental regions 
for the ingredient proportions that are not a simplex. Such experimental 

Fig. 6. Fraction of design space plots of our Bayesian D- and I-optimal designs for the fish patty experiment for four values of κ, which represents the level of 
uncertainty concerning the prior parameter vector θ. 
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regions arise when there are constraints on the ingredient proportions 
other than lower bounds for individual proportions. Methodologically 
speaking, this is not highly innovative, since the mixture coordinate- 
exchange algorithm of Piepel et al. (2005) for linear regression models 
is able to deal with this complication. However, embedding this capa-
bility in our implementation of the coordinate-exchange algorithm for 
choice experiments with mixtures would be useful for practitioners. 

Finally, we would like to point out that the work we presented here 
has applications in other fields of research than food. This is because 
choice experiments involving mixtures are relevant in, for example, 
transportation and economics too. As a matter of fact, Zijlstra, Goos, and 
Verhetsel (2019) conducted a choice experiments in which the mixtures 
between which the respondents had to choose were different ways in 
which a given mobility budget could be spent. Khademi, Timmermans, 
and Borgers (2013) discuss a choice experiment involving a mixture of 
road toll, congestion pricing and parking price. Boonaert, Van Hoywe-
ghen, Duguma Feyisa, Goos, and Maertens (2023) use a choice experi-
ment concerning the desired composition of a family, where the family 
composition is considered a mixture of boys and girls with different 
education levels. Finally, Yang, Timmermans, and Borgers (2016) use a 
mixture choice experiment to measure context-dependent responses to 
accumulative energy charges under budget constraints. In all of these 
non-food-related choice experiments, an ad hoc experimental design 
was used and there was a variable related to the total amount of the 
mixture. This total amount can be viewed as a process variable, and, 
therefore, the models and the optimal design approach we present here 
would be applicable to these choice experiments too. 
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