
MARIO HUMBERTO BECERRA
CONTRERAS

A comparison of frequentist methods and
Bayesian approximations in the

implementation of Convolutional Neural
Networks in an Active Learning setting

Computer Science master thesis

Instituto Tecnológico Autónomo de
México

(unofficial cover)



Abstract

In this work, an approximate Bayesian approach for Deep Learning is compared

with a conventional approach, all within a context of Active Learning. The con-

ventional approach is based on the optimization of a loss function, which results

in a single point estimate with no measure of uncertainty in the prediction or the

parameters. These conventional methods are the norm in Deep Learning literature.

The Bayesian approach, on the other hand, is seldom used, but has the advantage

that it gives a joint posterior distribution of the parameters. This distribution of

the parameters results in a posterior predictive distribution of the response varia-

ble. However, an exact implementation is too onerous, hence an approximation to

the Bayesian method is made. This approximation allows a feasible simulation of

a distribution that is close to the posterior distribution.

Recent work showed that using dropout in neural networks is equivalent to

a variational approximation to a Bayesian neural network [19]. Hence o↵ering

a scalable approach to sampling from the posterior distribution. This approach

can be used with Convolutional Neural Networks, an architecture widely used in

computer vision tasks.

The approximate Bayesian and frequentist CNNs are compared in three image

datasets, using the information of a trained model to query the most useful images

from a large pool of unlabeled data to add to a set of training data and achieve

higher accuracy than a random selection of images. Our results show that using

the trained model’s uncertainty is better than randomly choosing images, but they

also show that there is no evidence in favor of the variational approximation over

the frequentist methodology.



Contents

1. Introduction 1

2. Machine learning 5

2.1. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2. Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Variational Inference 18

4. Artificial Neural Networks 28

4.1. Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 28

4.2. Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 35

4.2.1. Convolution operation . . . . . . . . . . . . . . . . . . . . . 36

4.2.2. Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3. Architecture example . . . . . . . . . . . . . . . . . . . . . 38

5. Active Learning 40

6. Experimental results 46

i



Contents

6.1. MNIST dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2. Cats and dogs dataset . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3. CIFAR-10 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7. Conclusions 59

Appendices 61

A. Loss function optimization 62

A.0.1. Gradient descent (GD) . . . . . . . . . . . . . . . . . . . . . 63

A.0.2. Stochastic gradient descent (SGD) . . . . . . . . . . . . . . 66

A.0.3. Mini-batch gradient descent . . . . . . . . . . . . . . . . . . 67

B. Images with highest uncertainty 69

References 72

ii



List of Figures

3.1. Comparison of forward and backward KL divergence of a mixture

of Gaussians p (in blue), and three di↵erent unimodal Gaussian

distributions, each denoted by q (in red). On the left, the forward

KL divergence is smaller than the reverse KL divergence. On the

center and on the right, the opposite happens. . . . . . . . . . . . . 19

3.2. Example of mean-field variational inference for Bayesian logistic

regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1. Diagram of a multilayer perceptron with m = 3. . . . . . . . . . . 29

4.2. Diagram of a multilayer perceptron with two hidden layers, m = 3

and r = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3. Diagram of a multilayer perceptron with two hidden layers using

the general notation with L = 2, p = n[0] = 4, n[1] = 3 and n[2] = 4. 33

4.4. Example of a convolution operation. Source: https://github.

com/PetarV-/TikZ . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5. Example of max pooling function. Source: https://computersciencewiki.

org/index.php/File:MaxpoolSample2.png . . . . . . . . . . . . . 38

4.6. LeNet architecture (picture taken from [34]). The feature maps

correspond to the convolutional filters and the subsampling refers

to max pooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iii



List of Figures

5.1. Active learning cycle. A model is trained from the labeled data D,

data points are taken from the unlabeled pool of data U , labeled
by an oracle and then added to the training set of labeled data D
in order to retrain the model and continue the cycle. Image taken

from [51]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2. Accuracies of a logistic regression model using a variation ratios

acquisition function (blue) and a random acquisition function (red). 44

5.3. Comparison of points chosen by a random acquisition function and

a variation ratios acquisition function. . . . . . . . . . . . . . . . . 45

6.1. Example of 225 randomly chosen digits from the MNIST train set. 47

6.2. Accuracy of models in each acquisition step. The left picture shows

our implementation and the right picture shows Gal, Islam, and

Ghahramani’s implementation. In the latter case, Max Entropy

refers to predictive entropy. The x axis is the number of images. . 49

6.3. Accuracy of approximate Bayesian and frequentist models in each

acquisition step using predictive entropy as acquisition function.

The left picture shows our implementation and the right picture

shows Gal, Islam, and Ghahramani’s implementation. In the latter

case, Max Entropy refers to predictive entropy. . . . . . . . . . . . 50

6.4. Accuracy of approximate Bayesian and frequentist models in each

acquisition step using variation ratios as acquisition function. The

left picture shows our implementation and the right picture shows

Gal, Islam, and Ghahramani’s implementation. . . . . . . . . . . . 51

6.5. Example of 60 randomly chosen cats and 30 randomly chosen dogs

from the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6. Accuracy of models in each acquisition step in the cats and dogs

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.7. Accuracy of models in each acquisition step in the cats and dogs

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

iv



List of Figures

6.8. Example of 200 randomly chosen images from the dataset. . . . . . 55

6.9. Accuracy of models in each acquisition step in the CIFAR10 dataset. 56

6.10. Accuracy of models in each acquisition step in the CIFAR10 dataset. 57

A.1. Example of gradient descent for logistic regression. . . . . . . . . . 66

A.2. Example of mini-batch gradient descent for logistic regression com-

paring mini-batch sizes. . . . . . . . . . . . . . . . . . . . . . . . . 68

B.1. Images with highest uncertainties in the MNIST dataset. . . . . . 70

B.2. Images with highest uncertainties in the cats and dogs dataset. . . 70

B.3. Images with highest uncertainties in the CIFAR10 dataset. . . . . 71

v



Chapter 1

Introduction

The main goal of this work is to compare approximate Bayesian methods with

conventional methods used in Deep Learning within an Active Learning context.

Conventional methods are based on the optimization of a loss function, which is

rooted in maximum likelihood estimation. Optimization provides only a single

point estimate with no measure of uncertainty, in particular for the parameters.

On the other hand, the approximate Bayesian approach gives a joint posterior dis-

tribution of the parameters, thus giving a posterior predictive distribution of the

response variable as well. It is well known that Bayesian methods avoid overfit-

ting as they average over parameter values. However, due to their computational

complexity, Bayesian methods are seldom used in Deep Learning, in contrast with

conventional methods which are widely used.

Bayesian methods for Artificial Neural Networks date back to the late 1980s

and early 1990s. These first approaches focused on Markov Chain Monte Carlo

(MCMC) as it generates, albeit asymptotically, samples from the posterior distri-

bution of the parameters, such as Neal [41], Denker and Lecun [11] and MacKay

[36]. These approaches are not usually used in Machine Learning due to their

highly intensive computational burden. Nonetheless, there have been recent e↵orts

in bridging Bayesian inference to Machine Learning through clever approximations

1



Chapter 1: Introduction

to the full posterior distribution. An example of this, is the work by Hernández-

Lobato and Adams [26]. This algorithm relies on one-dimensional Gaussian dis-

tributions that approximate the marginal posterior distribution of the parameters

of a neural network at each step of training. Another example is the work done

by Graves [25], based on variational inference to approximate the posterior dis-

tribution of the parameters. However, these methods do not scale well to very

big neural network architectures and data sets. They also have the disadvantage

of only working with multi-layer perceptron architectures, making them impossi-

ble to use with more recent architectures such as Convolutional Neural Networks

(CNNs) or Recurrent Neural Networks (RNNs).

Very recently, Gal and Ghahramani [20] showed that a neural network with

arbitrary depth, with dropout applied before each weight layer, is equivalent to

the variational approximation to a deep Gaussian process. Dropout is the name

of a widely used stochastic regularization technique, which will be discussed in

Chapter 2. The equivalence between a neural network that uses dropout and a

deep Gaussian process comes from the fact that the loss function minimizes the

Kullback Leibler divergence between an approximate distribution and the posterior

of a deep Gaussian process. This means that approximate uncertainty estimates

can be obtained with neural networks that use dropout without changing anything

during training. The only di↵erence comes at prediction time in which instead of

doing a single forward pass and multiply each layer by a weight proportional to

dropout probability, several forward passes with dropout must be done instead.

They also showed in [21] that stochastic regularization techniques in arbitrary

neural models can be seen as approximate variational inference in Bayesian Neural

Networks.

This work is further extended by the same authors and they showed that the

same ideas of dropout as a Bayesian approximation can be used in CNNs [18].

In particular, they showed that dropout can be seen as approximate variational

inference in Bayesian Neural Networks, thus permitting the use of operations such

as convolution and pooling in probabilistic models. The implementation is a mat-

ter of just performing dropout after each convolution layer at training, and by

2



Chapter 1: Introduction

performing several stochastic forward passes through the model. The CNN model

is then used in an Active Learning environment, where the goal is to label images

intelligently so that a model has good performance with fewer training examples

[22]. Gal, Islam, and Ghahramani [22] are able to achieve 5% test error on the

MNIST data set [34] with only 295 labeled images, and 1.64% test error with 1000

labeled images. They compare di↵erent acquisition functions and also compare

the Bayesian paradigm with frequentist CNNs.

The dropout variational approach can also be used in Recurrent Neural Net-

works (RNNs), as shown by Gal and Ghahramani in [17]. In this paper, the authors

give insight on how to use dropout with RNNs and apply it on Long Short-Term

Memory (LSTM) and Gated recurrent unit (GRU) models, outperforming existing

techniques in language modeling with the Penn Treebank data set.

An example of how the uncertainty provided by Bayesian Neural Networks

can be used is shown by Li and Gal [35]. They use adversarial examples and

check if the original image can be told apart from the modified one by examining

the uncertainty representation of the Bayesian models. The deterministic Neural

Networks predict the wrong label very confidently on these adversarial samples.

Dropout models, while also predicting wrong labels, are uncertain about their

predictions. They finish by stating that their results suggest that assessing the

uncertainty of classification models can be used to identify adversarial examples,

but much more research is needed to solve the di�culties faced with adversarial

inputs.

In this work, the Bayesian approximation using dropout will be used and com-

pared with conventional methods in the context of Active Learning, following and

extending the work in [22]. First, the original paper is reproduced by training the

exact same architecture and using the same acquisition functions in the same data

set. Then, these ideas are tested in two di↵erent and more complex data sets.

The rest of this dissertation is organized as follows. In Chapter 2, a brief

overview on Machine Learning, and statistical inference is provided. This will help

clarify the main di↵erences between maximum likelihood estimation and uncer-

tainty updating for the unknown parameters of the model. In particular, posterior

3



Chapter 1: Introduction

sampling is useful to propagate parameter uncertainty into informative posterior

predictive distributions. Chapter 3 studies the concept of Bayesian variational ap-

proximation to posterior distributions. In Chapter 4 the basic concepts of neural

networks are introduced, and then extended to include the theory of convolutional

neural networks. In Chapter 5, the concept of active learning is studied and the

acquisition functions used in this work are introduced. Concluding remarks are

provided in Chapter 7.

4



Chapter 2

Machine learning

Machine learning is a set of methods used to learn patterns in data, and then

use these patterns to make predictions about new unseen data, or to make other

decisions [40]. Such decisions include making predictions about new unseen data,

clustering, or have an agent taking actions based on a reward signal [40, 55].

Machine learning has seen an increasing interest from the scientific and industry

thanks to the advance of computing capabilities. Such computing capabilities have

made possible most modern techniques. Computer power has been increasing ex-

ponentially since the 1960s, and this growth is known as Moore’s law. It was first

stated in 1965 [38, 39], claiming that the number of transistors in an integrated

computer circuit doubles about every two years for half the cost. Moore’s law has

helped the development of faster computers, as well as making these computers

available in all areas of everyday life. This has led, in turn, to an exponential

increase in data availability which has resulted in increased data storage require-

ments. However, Moore’s law is said to be at its limit nowadays. Meaning that it

has been increasingly di�cult to double the number of transistors in that two year

time frame while also being inexpensive. This is mainly due to the physical limita-

tions of heat dissipation and the smallest possible size of an electronic device [32].

This has led to di↵erent research directions in the field of computer architecture

5



Chapter 2: Machine learning

to find new ways in which computing power can be enhanced without sacrificing

costs. The limit of Moore’s law is an important factor in machine learning. The

reason is, that it is not enough to harness faster and better computing resources,

but also to use them e�ciently.

Machine learning is usually divided in supervised learning, unsupervised learn-

ing and reinforcement learning. The first involves learning a model that relates a

response to a set of possible explanatory features. The second involves learning

relationships and the structure of the data. The third involves learning a strat-

egy for a decision maker in order to maximize their reward while interacting with

an unknown environment. Reinforcement learning (RL) is similar to supervised

learning. Nonetheless, the di↵erence is that in the framework of RL, the learner

is continually interacting with its environment. In this setting, the agent receives

feedback after every action is taken. Whereas, in supervised learning the agent is

expected to receive a dataset from an oracle which, hopefully, includes all the right

answers. That is, in supervised learning there is an oracle that tells the learner

the right answer, whereas in RL the oracle only tells it how to perform relative to

past actions.

For example, in supervised learning one would like to estimate the income of

a household given a dataset that includes a set of relevant predictors, such as

zip code, home size, number of owned cars, etc. An example of unsupervised

learning would be to use the information in the dataset to be able to group together

similar households in terms of such predictors. This will hopefully uncover a

natural structure in the dataset, where households will be grouped with respect

to its characteristics. In this setting, it is expected that di↵erent groups will be

qualitatively di↵erent from one another. An example of RL would be to have

an agent learning how to invest in real estate; observing its rewards after the

investment period. Recently, supervised learning and reinforcement learning have

been combined to achieve harder goals for computers, such as beating the Go world

champion [52]. In this work, supervised learning will be discussed in more detail.

Eventually, in Chapter 5 supervised learning will be merged with unsupervised

learning, giving rise to the main application of this thesis. That is, active learning,

6



Chapter 2: Machine learning

a mix of using known structured data to uncover patterns from non-structured

data.

As mentioned above, in supervised learning there is a response associated to

a set of relevant features. In this setting, let y denote the response and x 2 R
p

denote a vector containing the features available to the analyst. The dataset

consists of n observations of such response stored in y 2 R
n. The corresponding

features are stored in a matrix X 2 R
n⇥p. Consequently, each feature will be

denoted by column vectors x(k) 2 R
n for k 2 {1, . . . , p}, and each datapoint will

be represented as a row vector xi 2 R
p for i 2 {1, . . . , n}. It is assumed that there

exists a relationship between y and X, which can be written as

y = f(X) + ", (2.1)

where f is a fixed but unknown function and " is a zero-mean random error term,

independent of X [27, p. 16]. The goal is to find the best approximation to the

function f , which is done with an estimate f̂ [27, p. 17]. This estimate f̂ is chosen

from a family of functions F . In machine learning F is known as the hypothesis

set.

For practical convenience, the family F is assumed to be indexed by a finite

dimensional vector ✓. Thus allowing to think of F✓ as a family of approximations

indexed by a finite set of unknown parameters. This changes the task of finding

a candidate in an infinite dimensional space to a problem in a finite dimensional

space such as Rd. In general, it is desirable for f̂ to keep the generalization error to

a minimum, where the generalization error is defined by the error of predicting for

any unseen vector x⇤, with x⇤ randomly sampled from the probability distribution

of features. In other terms, the error is usually expressed as the cost (loss) of

making a wrong prediction. Of course, the loss function for the generalization error

is not known, as it depends on unseen data. However, one minimizes the empirical

loss function defined by the set of training data available. That is, the empirical

loss function is approximated using the available dataset of n observations D =

{(X,y)}, where X and y have been defined above. Examples of F✓ are the linear

regression model, the general additive model, the logistic regression model and the

7



Chapter 2: Machine learning

neural network.

For example, a linear regression can be assumed. The loss function can be

defined as the quadratic error function defined as

f̂ = arg min
f2F✓

1

n

nX

i=1

(yi � f(xi))
2, (2.2)

where F✓ is the family of functions of the form f✓(X) = X✓ with ✓ 2 R
p. Thus,

the estimate f̂ is f̂(X) = X✓̂, where ✓̂ minimizes the error function. In particu-

lar, the linear regression model belongs to a type of methods called parametric

methods. In these methods, the modeler makes an assumption about the func-

tional form of f , which depends on a vector of parameters ✓ of fixed dimension.

After this, the modeler proceeds to train the model by choosing the vector of

parameters that minimizes a previously selected loss function [27, p. 21].

An approach to the estimation of parameters that is di↵erent to the concept

of error function minimization is the one of maximum likelihood estimation.

This is a probabilistic approach in which a probabilistic model is assumed to

the data generating mechanism. In the case of linear regression, it is commonly

assumed that the error term in (2.1) has a Gaussian distribution such that "i ⇠
N
�
0,�2

�
, then yi ⇠ N

�
xi

T✓,�2
�
for i 2 {1, . . . , n}. It is also usually assumed

that the observations (X,y) come from a random sample and are independent of

one another. Therefore, the log-likelihood of the sample is

L(✓) =
nX

i=1

log


1p
2⇡�2

exp

✓
� (yi � xi

T✓)2

2�2

◆�
. (2.3)

Maximum likelihood estimation uses the likelihood principle, which states

that all the information given by a sample of data is entirely held within the likeli-

hood function [24, 50]. Maximum likelihood estimation is just an implementation

of the likelihood principle which consists in choosing the values for ✓ so that they

maximize the likelihood of the data, i.e., equation (2.3) [50]. Informally, this is

choosing the values that maximize the probability of observing the given data [15,

p. 31] [50]. With some algebra, it is fairly easy to see that maximizing equation

(2.3) is equivalent to minimizing the squared error loss.

8



Chapter 2: Machine learning

An alternative setting is that of classification. In this case, it is assumed that

yi follows a Bernoulli distribution, such that the probability of yi of being 1 is

pi(✓), where ✓ is the parameter that indexes the probability. Then, the likelihood

function in this case is
Qn

i=1 pi(✓)
yi (1� pi(✓))

1�yi and thus, the log-likelihood is

L(✓) =
nX

i=1

[yi log (pi(✓)) + (1� yi) log (1� pi(✓))] . (2.4)

An alternative to maximum likelihood estimation is given by the Bayesian

approach. In this setting, the uncertainty about the unknown parameters is

stated as a probability distribution. First, a prior distribution on the parameters

✓ is assumed, and then the knowledge about them is updated with data. That

is, the modeler first uses a prior distribution p (✓) to quantify the knowledge that

they may have about ✓, and then computes the posterior distribution of ✓ given

X and y using Bayes’ theorem as such

p (✓|y,X) =
p (y|✓,X) p (✓|X)

p (y|X)
=

p (y|✓,X) p (✓|X)R
p (y|✓,X) p (✓|X) d✓

. (2.5)

The posterior distribution represents the knowledge about ✓ after the data has

been observed. It is a compromise between the prior beliefs and the data. Note

that the likelihood of the data p (y|✓,X) is used in the numerator of equation (2.5).

In fact, the Bayesian paradigm permits another implementation of the likelihood

principle, just like maximum likelihood, but with the added benefit of including

decision-related requirements [50].

An advantage of the Bayesian approach is that it uses the language of probabil-

ity to mathematically describe the uncertainty on unknown parameters and other

components in the modeling process. In addition, Bayesian inference is logically

consistent while dealing with this uncertainty [9, 10, 28, 43]. A philosophical dif-

ference between the frequentist and the Bayesian approach is that in the latter,

the degree of belief of the researcher is represented in the distribution of the pa-

rameters and hence, they are treated as random variables. Whereas in the former,

they are treated as a fixed but unknown value [43].

Since the denominator of equation (2.5) does not depend on ✓, as it is only a

9



Chapter 2: Machine learning

normalizing constant, it is just usually described up to a proportionality constant

p (✓|y,X) / p (y|✓,X) p (✓|X) . (2.6)

The posterior distribution is also used to predict the values of unobserved data.

Let x⇤ be a vector of features for which a prediction of y⇤ is desired, then the

posterior predictive distribution must be used, defined as

p (y⇤|X,y,x⇤) =

Z
p (y⇤|✓,x⇤) p (✓|X,y) d✓. (2.7)

Note that this posterior distribution is, as it name implies, a distribution, i.e.,

it is not a single prediction but potentially infinitely many predictions, weighted

by how probable each value is to be. If the goal is to have a point prediction ŷ⇤ for

x⇤, then the modeler could use Decision Theory to find a point estimate. The idea

is to specify a loss function L(y⇤, ŷ⇤) that quantifies the loss of having an estimate

ŷ⇤ when the real value is y⇤, and have the point estimate be the ŷ⇤ that minimizes

this loss function. The optimal value for the squared loss L(y⇤, ŷ⇤) = (y⇤ � ŷ⇤)2

is the expected value of the posterior predictive distribution, that is,

ŷ⇤ = Ey⇤|x⇤,y,X [y] . (2.8)

Another loss function is the absolute loss L(y⇤, ŷ⇤) = |y⇤ � ŷ⇤| which results

in using the median of the posterior predictive distribution as a point estimate.

Finally, the 0-1 loss function L(y⇤, ŷ⇤) = I(y⇤ 6= ŷ⇤) results in using the mode of

the posterior predictive distribution as a point estimate. This last estimate is also

called a maximum a posteriori (MAP) estimate. It should be noted that under

certain conditions the MAP estimate is equivalent to the MLE.

2.1. Example

All these concepts can be illustrated in the context of logistic regression. Sup-

pose that we have n observations of a binary response variable y 2 {0, 1}n and two

continuous features x(1),x(2) 2 R
n. The frequentist approach will be studied first.

10



Chapter 2: Machine learning

Then, it will stated as loss function minimization and eventually as an inference

problem in the Bayesian framework.

If someone wanted to build a classifier using a linear regression model, then

they would run into a problem because a linear model of the form µ(xi) = ✓0 +

✓1x
(1)
i + ✓2x

(2)
i is not bounded. In contrast, the response variable y from the data

only takes the values 0 and 1, hence, it is a better idea to model the probability

that a feature vector belongs to each class. This way, yi is a random variable that

follows a Bernoulli distribution with parameter pi, where pi is the probability of

yi being 1. The range of f as a linear model is R, so it must be mapped to the

[0, 1] interval in which probabilities live, and it can be done with what is called a

sigmoid function. The logistic sigmoid function is a widely used link function

for this type of problems [4, p. 114]. It is defined as

�(w) =
ew

1 + ew
=

1

1 + e�w
. (2.9)

It is easy to see that limw!�1 �(w) = 0 and limw!1 �(w) = 1.

Another possible sigmoid function is the probit function, defined as the inverse

of the cumulative distribution function of a Gaussian random variable [15, p. 296].

That is, �(w) = ��1 (x), where

�(w) =

Z w

�1

1p
2⇡

exp

✓
�x2

2

◆
dx. (2.10)

There are some di↵erences in the theory and behavior of the logistic and the

probit functions, but in practice they hardly make any substantial di↵erence and

the choice of one over the other may be a matter of taste or convenience [23,

p. 118]. Henceforth, we will use the logistic function as the sigmoid function for

binary classification problems.

It has been established that � (·) maps from R to [0, 1], but it is yet to be

explained how to relate this to the original problem which is to build a linear

classifier using the vectors x(1) and x(2). Using � (·), one can define the probability

that yi belongs to class 1 given features x(1)
i and x(2)

i as

p (yi = 1|xi,✓) = �(✓0 + ✓1x
(1)
i + ✓2x

(2)
i ) =

1

1 + e
�
⇣
✓0+✓1x

(1)
i +✓2x

(2)
i

⌘ , (2.11)

11



Chapter 2: Machine learning

with xi =
h
x(1)
i , x(2)

i

iT
. Thus

p (yi = 0|xi,✓) = 1� p (yi = 1|xi) =
1

1 + e✓0+✓1x
(1)
i +✓2x

(2)
i

. (2.12)

This means that yi is fully described as a Bernoulli distribution with parameter

pi = p (yi = 1|xi,✓). When the response variable is Bernoulli distributed, the

likelihood of n independent observations is

nY

i=1

pi(✓)
yi (1� pi(✓))

1�yi . (2.13)

Then, in consequence, the log-likelihood of n independent observations is

L(✓) =
nX

i=1

[yi log (pi(✓)) + (1� yi) log (1� pi(✓))] , (2.14)

where pi(✓) = �(✓0 + ✓1x
(1)
i + ✓2x

(2)
i ).

The maximum likelihood estimator of ✓ = [✓0, ✓1, ✓2]
T is the vector ✓̂ that

maximizes L(✓) in equation (2.14); that is ✓̂ = arg maxL(✓).

Another way to interpret the problem of binary classification, is to consider the

learning problem from an optimization perspective in which the goal is to minimize

an appropriate loss function. It has been shown above that maximizing equation

(2.14) leads to the maximum likelihood estimate. However, if the sign is changed,

the result is a loss function that can be minimized, and it provides the exact same

solution as before.

The new objective function that needs to be minimized is

L(✓) = �
nX

i=1

[yi log (pi(✓)) + (1� yi) log (1� pi(✓))] . (2.15)

This loss function is commonly known in the literature as the binary entropy

loss.

Intuitively, this is an error function because if yi = 1, then 1 � yi = 0, so the

second term in the loss function vanishes and what is left remaining is log (pi(✓)).

12



Chapter 2: Machine learning

Now, when pi(✓) is big, that is, close to 1, then log (pi(✓)) ! 0. However, if

pi(✓) is small, that is, close to 0, then log (pi(✓)) ! �1, and so the overall loss

function tends to infinity. This means that when the real value of yi is 1 and

a low probability is assigned to it, then the loss function is large; but if a high

probability is assigned to it, then the loss function is small. The same reasoning

works for when yi = 0. So, when there is an incorrect classification with very

high probability, the loss function takes a large value. Hence, minimizing the loss

function leads to choosing values of ✓ that yield a high probability to the cases

when yi = 1 and a low one when yi = 0.

The logistic regression model can be reformulated from a Bayesian approach.

As before, it will be assumed that yi follows a Bernoulli distribution such that the

probability of being 1 is pi(✓) = �(✓0 + ✓1x
(1)
i + ✓2x

(2)
i ), where � (·) is the logistic

sigmoid function. In the Bayesian paradigm, the unknown parameter vector ✓ =

[✓0, ✓1, ✓2]
T must have a joint prior distribution. A good idea is to assume a

Gaussian distribution for the unknown unobservable parameter ✓. Furthermore,

independence between the components of ✓ can be assumed which in turn allows

one to write the prior distribution as

✓ ⇠ N
�
µ,�2I

�
, (2.16)

where µ 2 R
3, �2 2 R

+ and I is a 3 ⇥ 3 identity matrix. Assuming µ =

[µ0, µ1, µ2]
T , then the prior distribution takes the following form

p (✓) =
2Y

k=0

1p
2⇡�2

e�
(✓k�µk)2

2�2 . (2.17)

The likelihood can be written as

p (X|✓) =
nY

i=1

pi(✓)
yi (1� pi(✓))

1�yi , (2.18)

which follows from the independence assumption in the data-generating mecha-

nism. Moreover, Bayes’ theorem in equation (2.6) allows one to write the posterior

13



Chapter 2: Machine learning

distribution as

p (✓|y,X) =

hQn
i=1 pi(✓)

yi (1� pi(✓))
1�yi

i Q2
k=0

1p
2⇡�2

e�
(✓k�µk)2

2�2

�

R hQn
i=1 pi(✓)

yi (1� pi(✓))
1�yi

i Q2
k=0

1p
2⇡�2

e�
(✓k�µk)2

2�2

�
d✓

.

(2.19)

It should be noted that the integral in the denominator is a constant with

respect to ✓, thus, the posterior distribution can be computed up to a normalizing

constant as

p (✓|y,X) /
"

nY

i=1

pi(✓)
yi (1� pi(✓))

1�yi

#"
2Y

k=0

1p
2⇡�2

e�
(✓k�µk)2

2�2

#
. (2.20)

Unfortunately, for most practical problems the integral in the denominator can-

not be solved analytically, therefore numerical methods are used. One class of

widely used algorithms is Markov Chain Monte Carlo (MCMC), which includes

Metropolis-Hastings and Hamiltonian Monte Carlo. The main goal of MCMC

methods is to generate samples in an attempt to summarize and report posterior

inferences on the unknown parameters. Another class of numerical methods is

Variational Inference, which is discussed in Chapter 3.

Note how the maximum likelihood and the loss function minimization ap-

proaches only provide a point estimate of the parameters and of the predictions.

On the other hand, the Bayesian approach provides a posterior distribution of the

parameters and a posterior predictive distribution. As mentioned above, these

distributions reflect the knowledge about the parameters, and are a compromise

between the prior distribution and the data. A prior distribution that has a very

low variance may give rise to a posterior distribution that does not deviate too

much from the prior. Whereas a prior distribution with a very high variance will

be driven more by the data, and hence the posterior distribution may deviate a lot

from the prior distribution. The prior distribution should reflect the knowledge

that the modeler has about the phenomenon being modeled.

14



Chapter 2: Machine learning

2.2. Overfitting

In general, when training a model for prediction, it is not the main goal to

minimize training error, but prediction error. It does not matter whether one

chooses to follow the function minimization, frequentist or Bayesian paradigm.

That is, one wants to minimize the error of any future observation (x⇤,y⇤). This

is because these models are trained to be used with data that has not been seen

before, therefore, it is desirable to have a model that generalizes well to future

observations. This means that one wants to minimize the expected prediction

error, hence, it is common to divide the data set (X,y) in two: the training set

and the test set. To do this, from the original data set, a random sample of

observations is assigned to be part of the training set and the rest are part of the

test set. The idea is that the test set should be used to measure the predictive

performance of the model, and this also helps to diagnose an overfitted model, a

concept which is discussed later in this chapter. The data is sometimes divided

in three di↵erent sets. This third set is called the validation set, and it is used

to measure the generalization performance when tuning hyperparameters, such as

regularization parameter values, discussed further in this document.

The idea of separating the data in di↵erent sets comes from the bias-variance

trade-o↵, a property of learning models. The idea of the bias-variance trade-o↵

is that the expected prediction mean squared error of a learned model f̂ can be

decomposed in the sum of three quantities: the squared bias of f̂ , the variance of

f̂ , and an irreducible error. The bias of the model refers to the error that comes

from approximating a complicated phenomenon with a simpler model, the variance

refers to how much the estimated model f̂ would change with a di↵erent data set,

and the irreducible error refers to the noise that comes from the problem itself

which cannot be decreased [15, 27]. In general, a modeler wants to have models

with low bias and low variance, so that the expected prediction mean squared

error is low, but as the name implies, there is a trade-o↵. Flexible models tend to

have low bias but high variance, and rigid models tend to have low variance but

high bias.

15



Chapter 2: Machine learning

When training highly flexible models, the separation of data in training and

validation sets is more important. This is because very flexible models tend to

have higher variance, and thus they may fit the training data very well, but may

not generalize very well with data that has not been previously observed. This is

due to the fact that part of the error is being captured by the model. This concept

is known as overfitting, and is a very common problem in machine learning

applications.

2.3. Regularization

One way to control overfitting is with regularization, in which a penalization

term is added to the loss function to prevent the parameters from taking values

that are too high. A very simple regularizer is the L2 norm in which the sum of

the squared parameters is added to the loss function.

For example, in linear regression, the usual loss function that is sought to be

minimized is
nX

i=1

 
yi �

pX

k=1

✓kxk

!2

, (2.21)

but with the L2 regularizer (also known as ridge regression), equation (2.21) is

modified so that the loss function now is

nX

i=1

 
yi �

pX

k=1

✓kxk

!2

+ �

 
pX

k=2

✓2k

!
, (2.22)

where � > 0 is called the regularization parameter, and controls the relative im-

portance between the two main terms of the sum. The value of this parameter

can have a big impact in the loss function: if it is too big, then it will penalize too

much and most parameters will be near 0, but if it is too small, then there is little

regularization e↵ect and it is as if there were no penalization at all. In practice,

it is common to choose several concrete values of � (such as 0.001, 0.01 and 0.1)

and select the final value using the validation set previously mentioned, so that

the final chosen value of � minimizes the validation set error.

16



Chapter 2: Machine learning

Another type of regularization that is widely used in neural network literature,

presented further in this work, is dropout [54]. Dropout consists in randomly

dropping out, that is temporarily removing, units of the neural network in each

feed-forward mini-batch pass, which results in a thinned network. Each unit is

removed, along with all its input and output connections, with a certain probability

p. The original idea of dropout is that by randomly dropping units, the modeler

is essentially training di↵erent networks, so the end result is the combination of

di↵erent architectures, which result in less overfitting. At test time, the prediction

is usually just the average of the di↵erent thinned networks. These concepts will

be clearer after Chapter 4 in which neural networks are discussed.

In this chapter, the concepts of machine learning were introduced, presenting

both the frequentist and the Bayesian paradigms for prediction, as well as a brief

introduction to regularization. In the following chapters, an introduction to Varia-

tional Inference (VI) will be given. After that, a brief overview of Artificial Neural

Network models will be discussed. Afterwards, the Active Learning methodology

will be presented in Chapter 5 and, finally, in Chapter 6 numerical experiments

will be shown.

17



Chapter 3

Variational Inference

As mentioned in Chapter 2, when performing Bayesian inference, it is of interest

to compute the posterior distribution p (✓|y,X), which is usually intractable, so

one must resort to numerical approximations. In this chapter, a brief overview of

variational inference (VI) is given, which is one of several numerical approxima-

tions, such as Markov Chain Monte Carlo (MCMC) or Integrated Nested Laplace

Approximations (INLA). The idea of VI is to use optimization to approximate the

target distribution p (✓|y,X) with some distribution q(✓) that is close to the poste-

rior. The Kullback-Leibler (KL) divergence is used in VI as a measure of closeness

of the proposed distribution, which is known as the variational approximation, to

the true posterior [5]. The KL divergence is defined as

KL (q||p) = Eq


log

✓
q(✓)

p (✓|y,X)

◆�
=

Z 1

�1
q(✓)


log

✓
q(✓)

p (✓|y,X)

◆�
d✓. (3.1)

Note that the KL divergence is not symmetrical, i.e., KL (q||p) 6= KL (p||q).
That is the reason it is called a divergence and not a distance. The former is

called the reverse KL divergence and the latter is called the forward KL di-

vergence, and each one of them prioritizes di↵erent aspects of the approximation.

Reverse KL is said to be “zero-forcing” because it forces q to be zero in some ar-

eas, e↵ectively ignoring the value of p in those areas, even if p is bigger than zero.

18



Chapter 3: Variational Inference

On the contrary, forward KL is said to be “zero-avoiding” because q avoids areas

where it happens simultaneously that q is zero and p is bigger than zero.

This behavior can be appreciated in figure 3.1, which shows forward and re-

verse KL divergence of a mixture of Gaussians, denoted by p, and three di↵erent

unimodal Gaussian distributions, each denoted by q. The blue distribution in

the figure is the mixture of Gaussians, and the red distributions are the unimodal

Gaussians. In subfigure (a), the zero-avoiding behavior can be appreciated because

the red distribution q has a mode where the blue distribution p has zero values

and q avoids the areas where p is bigger than zero. It can also be appreciated that

the reverse KL divergence is lower than the forward KL divergence. In subfigures

(b) and (c), the zero-forcing behavior is evident because the algorithm is forcing

q to be zero even if p is bigger than zero. Because of this, it has a lower forward

KL divergence. These two subfigures also show the two local optima gotten from

minimizing the reverse KL divergence, each being placed in the two modes of the

p distribution. In fact, both forward and reverse KL divergence on subfigure (b)

are equal to the ones on subfigure (c).

Forward KL = 0.69
Reverse KL = 1.26

θ

(a) KL (p||q) < KL (q||p)

Forward KL = 5.68
Reverse KL = 0.74

θ

(b) KL (p||q) > KL (q||p)

Forward KL = 5.68
Reverse KL = 0.74

θ

(c) KL (p||q) > KL (q||p)

Figure 3.1: Comparison of forward and backward KL divergence of a mixture of Gaussians p

(in blue), and three di↵erent unimodal Gaussian distributions, each denoted by q (in red). On

the left, the forward KL divergence is smaller than the reverse KL divergence. On the center

and on the right, the opposite happens.

In VI, the goal is to minimize the reverse KL divergence KL (q||p) instead of

19



Chapter 3: Variational Inference

the forward KL divergence KL (p||q) because the latter requires averaging with

respect to p (✓|y,X), which is what the modeler is trying to approximate in the

first place. Methods to deal with forward KL divergence exist, such as expectation

propagation, but they are not of concern in this work.

Although the main goal of VI methods is to minimize the reverse KL divergence

defined in equation (3.1), in practice what is usually done is to maximize a related

quantity called the ELBO (Evidence Lower Bound), defined as

L(q) = Eq [log p(y,X,✓)]� Eq [log q(✓)] . (3.2)

The relationship between the ELBO and KL is shown as follows. Starting from

the KL divergence definition in (3.1), using the quotient rule of the logarithm, and

using the fact that taking expectations is a linear operator, the KL divergence can

be written as

KL (q||p) = Eq


log

✓
q(✓)

p (✓|y,X)

◆�
= Eq [log q(✓)]� Eq [log p (✓|y,X)] . (3.3)

Using the definition of conditional probability yields

KL (q||p) = Eq [log q(✓)]� Eq


log

p(✓,y|X)

p(y|X)

�
. (3.4)

Using the definition of conditional probability a second time, one obtains

KL (q||p) = Eq [log q(✓)]� Eq


log

p(✓,y,X)

p(y|X)p(X)

�
. (3.5)

Using the quotient rule of the logarithm one more time results in

KL (q||p) = Eq [log q(✓)]� Eq [log p(✓,y,X)� log p(y|X)� log p(X)] . (3.6)

But since p(X) and p(y|X) do not depend on q, the expected value of each of

these two densities is a constant under taking expectations under q, hence

KL (q||p) = Eq [log q(✓)]� Eq [log p(✓,y,X)] + log p(y|X) + log p(X). (3.7)

20



Chapter 3: Variational Inference

Since the goal is to find the optimal q(·), then log p(X) and log p(y|X) are just

constants in the optimization process, hence they can be ignored for optimization

purposes, and hence, one just needs to minimize the following equation

Eq [log q(✓)]� Eq [log p(✓,y,X)] , (3.8)

which is the negative of the ELBO, defined in equation (3.2). Therefore, minimiz-

ing the KL divergence is equivalent to maximizing the ELBO.

Let � be the parameter vector of the variational distribution q(✓). The objective

is to approximate p(✓|y,X) by finding the values of � that maximize equation

(3.2). For this, several techniques could be used, such as coordinate ascent and

gradient ascent. In order to perform gradient ascent, it is necessary to compute

the gradient of the objective function with respect to the variational parameters,

that is, r�L(q,�). This gradient is computed by

r�L(q,�) = Eq [(r� log q(✓|�)) (log p(y,X,✓)� log q(✓|�))] . (3.9)

In general, the gradient cannot be computed analytically because it may not be

possible to write down an explicit formula for the expectation. It may be possible

to take the expectation for some models, but for most cases, some approximation

must be made. A good approach is to approximate the expected value with Monte

Carlo simulation. Let {z1, ..., zS} be samples taken from q(✓|�), then one can

approximate the expected value with an arithmetic mean as such,

r�L(q,�) = Eq [(r� log q(✓|�)) (log p(y,X,✓)� log q(✓|�))]

⇡ 1

S

SX

k=1

(r� log q(zk|�)) (log p(y,X, zk)� log q(zk|�)) .
(3.10)

This approach gives noisy but unbiased estimates of the expected value. For

more details about this see [31], [46] and [47].

A family that is often used to approximate p is the mean-field variational

family, where each parameter is independent from on another, such that

q(✓) =
Y

i

q(✓i|�i). (3.11)

21



Chapter 3: Variational Inference

Because of how it is defined, the mean-field variational family can capture any

marginal distribution of the parameters. However, it cannot recover explicit cor-

relation between the parameters since it assumes that they are independent from

one another. In consequence of this, the marginal representation of each parameter

may underestimate the variance of the target distribution [5].

The following example will help illustrate the logic behind the Monte Carlo

approximation for the variational gradient under the mean field variational family.

In this example, the goal is to approximate the posterior distribution of a two-class

logistic regression.1 Assume a data matrix X 2 R
n⇥p and a response vector y

with values 1 or 0. Each observation yi is modeled as a Bernoulli distribution such

that

yi|xi,✓ ⇠ Bern(�(✓Txi)) (3.12)

where �(·) is the logistic sigmoid function. The prior distribution for ✓ is a Gaus-

sian ✓ ⇠ N
�
0,�2

0Ip

�
where Ip is the p⇥ p identity matrix and �2

0 2 R
+.

In this case, the mean-field variational distribution is

q(✓|�) =
pY

j=1

N
�
✓j |µj ,�

2
j

�
(3.13)

with � =
⇥
µ1, . . . , µp,�2

1 , . . . ,�
2
p

⇤T
and where N

�
✓j |µj ,�2

j

�
denotes the value of a

Gaussian density function with mean µj and variance �2
j that is evaluated in ✓j .

According to equation (3.9), to compute the gradient of the ELBO, one must be

able to compute r� log q(✓|�). Hence, it is necessary to have the partial derivative

of log q(✓|�) with respect to each µj and �2
j , with j 2 {1, . . . , p}.

1The idea of this example comes from Keyon Vafa, posted in http://keyonvafa.com/

logistic-regression-bbvi/.

22



Chapter 3: Variational Inference

The process to compute rµj goes as follows,

rµj log q(✓|�) = rµj log

 
pY

k=1

N
�
✓k|µk,�

2
k

�
!

= rµj

pX

k=1

log
�
N
�
✓k|µk,�

2
k

��

= rµj log
�
N
�
✓j |µj ,�

2
j

��

= rµj log

0

@ 1q
2⇡�2

j

exp

 
� (✓j � µj)2

2�2
j

!1

A

=
✓j � µj

�2
j

.

(3.14)

The process for �2
j is similar, although it is easier to work with the logarithm

because of the positivity restriction and because it leads to simpler algebra. Let

↵j = log �2
j , so that instead of computing r�2

j
, r↵j will be computed.

The process goes as follows,

r↵j log q(✓|�) = r↵j log

 
pY

k=1

N
�
✓k|µk,�

2
k

�
!

= r↵j

pX

k=1

log
�
N
�
✓k|µk,�

2
k

��

= r↵j log
�
N
�
✓j |µj ,�

2
j

��

= r↵j log

0

@ 1q
2⇡�2

j

exp

 
� (✓j � µj)2

2�2
j

!1

A

= r↵j log

✓
1p

2⇡e↵j
exp

✓
� (✓j � µj)2

2e↵j

◆◆

= �r↵j log
⇣p

2⇡e↵j

⌘
� (✓j � µj)2

2
r↵je

�↵j

= �1

2
+

(✓j � µj)2

2
e�↵j

= �1

2
+

(✓j � µj)2

2�2
j

.

(3.15)

23



Chapter 3: Variational Inference

To compute the gradient in equation (3.9), it is necessary to also compute the

log-likelihood of the data p(y,X,✓). Using the chain rule of probability, this can

be written as log p(y|X,✓) + log p(X|✓) + log p(✓).

Note that in order to compute the gradient, log p(X|✓) is not needed, because
in this case, the model is a discriminative model and not a generative one, hence

✓ does not a↵ect the distribution of the inputs X. Mathematically, this can be

seen in the following way

r�L = Eq [(r�q(✓|�)) (log p(y,X,✓)� log q(✓|�))]

= Eq [(r�q(✓|�)) (log p(y|X,✓) + log p(X|✓) + log p(✓)� log q(✓|�))]

= Eq [(r�q(✓|�)) (log p(y|X,✓) + log p(✓)� log q(✓|�))] + log p(X|✓)Eq [r�q(✓|�)]

= Eq [(r�q(✓|�)) (log p(y|X,✓) + log p(✓)� log q(✓|�))] + cEq [r�q(✓|�)] .

In the last line, log p(X|✓) has been reduced to just a constant c.

Furthermore, it can be proven that Eq [r�q(✓|�)] = 0 because of the definition

of expectation and the dominated convergence theorem as was done in [47],
Z

r�q(✓|�)d✓ = r�

Z
q(✓|�)d✓. (3.16)

And finally,

r�

Z
q(✓|�)d✓ = 0. (3.17)

Therefore, the derivative of the ELBO can be written as

r�L = Eq [(r�q(✓|�)) (log p(y|X,✓) + log p(✓)� log q(✓|�))] . (3.18)

Since y is a Bernoulli random vector, then

log p(y|X,✓) = log

 
nY

i=1

�(✓Txi)
yi(1� �(✓Txi))

1�yi

!

=
nX

i=1

h
yi log

⇣
�(✓Txi

⌘
+ (1� yi)(1� �(✓Txi))

i
.

(3.19)

And since ✓ was assumed to have Gaussian prior, then

log p(✓) = log
pY

j=1

�(✓j) =
pX

j=1

log �(✓j) =
1p
2⇡

e

✓
�

✓2j
2

◆

. (3.20)

24



Chapter 3: Variational Inference

With these derivations, a gradient ascent approach can be taken in order to

optimize the ELBO. This is the same as gradient descent presented in Appendix A,

except that instead of taking the negative of the gradient to move in the direction

of maximum descent, the gradient is taken as it is so that the algorithm moves

in the direction of maximum ascent. Like in gradient descent, the modeler starts

with a random initial � vector, and this vector is updated in each iteration using

the gradient of the loss function. However, in this case, the gradient must be

approximated with Monte Carlo simulation, so in each step t the algorithm takes

S samples zk, with zk ⇠ q(✓|�) for k 2 {1, · · · , S}. This way, the approximate

gradient is computed as

r�L ⇡ ��L =
1

S

SX

k=1

(r� log q(zk|�)) (log p(y,X, zk)� log q(zk|�)) , (3.21)

and then the � parameter is updated as �t+1 = �t + ⌘t��tL until a certain

stopping criterion is met, with each ⌘t chosen beforehand. The choice of ⌘t depends

on the modeler, and can be chosen to be the same for all iterations, or it can change

with each iteration like in the AdaGrad method [12].

An implementation of this algorithm was made in the R programming language

with a simulated data set of n = 500 data points and p = 1 feature. The response

vector was created with the logistic sigmoid function as yi = �(✓0 + ✓1xi), with

✓0 = �5 and ✓1 = 5.

The initial value for � = [µ1, µ2,↵1,↵2]
T was chosen to be zero, and in each

iteration, S = 50 Monte Carlo samples are taken to compute the approximate

gradient. The step size ⌘t is chosen using the AdaGrad method [12] in which

⌘t = (diag(Gt))
1
2 , where diag(Gt) denotes the diagonal of the matrix Gt =

(��t) (��t)
T . In this case ⌘t is a vector, hence the product ⌘t��t refers to an

element-wise multiplication. The stopping criterion was chosen to be
��µt+1 � µt

�� <

0.005, where µt = [µt
1, µ

t
2]

T
.

Figure 3.2 shows the results of the implementation, and the values estimated

by the glm package in R are also shown for comparison. The values estimated by

the glm package are taken as Gold standard. The top-left image shows the value

of the objective function, i.e., the ELBO, in each iteration, slowly increasing in

25



Chapter 3: Variational Inference

zigzag because of the noise of the estimations. The top-right image shows the real

values of ✓ (-5 and 5) with gray dashed lines, the values of ✓ estimated by the glm

package with colored dotted lines, and the approximated values of the variational

distribution q(✓|�). The bottom-left image shows the values of µ1 and µ2 in each

iteration, with horizontal colored dotted lines showing the estimated values by

the glm package; it can be seen how they slowly approach their real values. The

bottom-right image shows the values of µ1 and µ2 in each iteration in the plane,

where the noise of the gradient estimation is seen in the wiggliness of the line;

the red dot shows once again the value estimated by the glm package. There are

ways to have better and less noisy estimates, but they are beyond the scope of

this work. For more details about better approximations of the gradient, see [31]

and [47].

−400

−300

−200

−100

0 200 400 600
Iteration

EL
BO

0.0

0.5

1.0

1.5

2.0

−4 0 4 8
µ

p

−4

0

4

0 200 400 600
Iteration

µ

●

0

2

4

6

−6 −4 −2 0
µ0

µ
1

Figure 3.2: Example of mean-field variational inference for Bayesian logistic regression.

The posterior predictive distribution of y⇤ for a new vector of features x⇤ can

be approximated using the variational approximation. In particular, the modeler

26



Chapter 3: Variational Inference

could take T samples from the variational posterior distribution as such: for j 2
{1, . . . , T},

1. Sample a vector ✓j ⇠ q(✓|�)

2. Use that value to sample y⇤j ⇠ p(y⇤|✓j ,x⇤)

Then
�
y⇤j
 T

j=1
is a set of T independent samples from the posterior predictive

distribution p (y⇤|y,X,x⇤).

In this chapter, Variational Inference has been discussed as a way to approx-

imate the posterior predictive distribution. This was posed as an optimization

problem in which the Kullback-Leibler divergence is minimized, and it was shown

to be equivalent to maximizing the ELBO. In addition, a numerical approximation

to the gradient using Monte Carlo simulation was introduced, thus allowing the

modeler to perform the optimization process. Finally, an example of VI on a logis-

tic regression problem was presented. In the following chapter, a brief overview of

Artificial Neural Network models will be presented to motivate the methodology

presented in Chapter 5 and illustrated with numerical experiments in Chapter 6.

27



Chapter 4

Artificial Neural Networks

In Chapter 2 it was mentioned that in supervised learning there is a response

variable y 2 R
n and a data matrix X 2 R

n⇥p. It is assumed that there exists

a relationship between y and X such that y = f(X) + ", with f being a fixed

but unknown function. Since f is unknown, it is estimated with a function f̂ that

is chosen from a parameterized family of functions F✓. Artificial neural networks

(ANNs) belong to one of the families from which F✓ can be chosen. In this chapter,

two types of ANNs will be studied: feed-forward neural networks and convolutional

neural networks (CNNs).

4.1. Artificial Neural Networks

The most basic, and perhaps the best known, type of ANN is the feed-forward

neural network, also widely called multilayer perceptron (MLP). This concept will

be first introduced in the frequentist framework and then they will be explained

in the Bayesian framework.

To illustrate the multilayer perceptron, consider a simple example: a researcher

wants to model a continuous variable y from a single feature x. A very sim-

ple model would be a linear regression, in which each observation i is mod-

28



Chapter 4: Artificial Neural Networks

eled as yi = ✓0 + ✓1xi, with ✓0 and ✓1. ANNs go further and take non-linear

transformations of this linear predictor with some function �(·), such that yi =

✓[1]0 +
Pm

j=1 ✓
[1]
j �

⇣
✓[0]0 + ✓[0]j xi

⌘
, where m is a tuning hyperparameter previously

chosen. Function �(·) is called the activation function, and is very often chosen

to be the logistic sigmoid function �(x) = (1 + e�x)�1, the hyperbolic tangent

�(x) = tanh(x), or the Rectified Linear Unit (ReLU) �(x) = max(0, x).

Figure 4.1 shows these relationships in a graphic way for a model with m = 3

and where ak,i is defined as ak,i = �
⇣
✓[0]0 + ✓[0]k xi

⌘
for k 2 {1, 2, 3}. For simplicity,

this image does not explicitly show the parameters ✓[0]0 and ✓[1]0 , which are called

the bias parameters.

θ1
[0]

θ2
[0]

θ3
[0]

θ1
[1]

θ2
[1]

θ3
[1]

xi

a1,i

a2,i

a3,i

yi

Figure 4.1: Diagram of a multilayer perceptron with m = 3.

If the response variable y happened to be a binary variable, then one last

transformation needs to be applied to map the model to the [0, 1] interval and

model y as a probability, just as in logistic regression. In the case of a binary

response variable, yi could be written as

yi = �

0

@✓[1]0 +
mX

j=1

✓[1]j �
⇣
✓[0]0 + ✓[0]j xi

⌘
1

A = �

0

@✓[1]0 +
mX

j=1

✓[1]j aj,i

1

A , (4.1)

29



Chapter 4: Artificial Neural Networks

with �(·) the logistic sigmoid function to map from R to [0, 1]. The choice of

function �(·) depends on the nature of the response variable. In the case of a

continuous response variable, �(·) is the identity function; in a binary classification

problem, it could be the logistic sigmoid function; and in the case of a classification

problem with more than two categories, a softmax function could be used.

A more complex model can be created by taking linear combinations of non-

linear functions of the previous result. Let

a[1]k,i = �[1]
⇣
✓[1]0 + ✓[0]k xi

⌘
(4.2)

for k 2 {1, . . . ,m} and

a[2]k,i = �[2]

0

@✓[1]0,k +
mX

j=1

✓[1]j,ka
[0]
j,1

1

A (4.3)

for k 2 {1, . . . , r}.

Then

yi = ✓[2]0 +
rX

j=1

✓[2]j a[2]j,i (4.4)

where r, like m, is chosen beforehand. The values m and r are called the number

of nodes or units of each layer. This is a deeper model than the last one because

it has more layers. Notice that there are two di↵erent activation functions �[1](·)
and �[2](·). Each layer can have a di↵erent function. The first one could be a

sigmoid function and the second one a hyperbolic tangent, or vice versa, or they

could both be the same function.

Figure 4.2 shows this graphically with m = 3 and r = 2. Layers corresponding

to a[1]k,i for k 2 {1, . . . ,m} and a[2]k,i for k 2 {1, . . . , r} are called the hidden layers.

Figure 4.1 shows a multilayer perceptron with one hidden layer, and figure 4.2

shows a multilayer perceptron with two hidden layers.

30



Chapter 4: Artificial Neural Networks

θ1
[0]

θ2
[0]

θ3
[0]

θ1,1
[1]

θ1,2
[1]

θ2,1
[1]

θ2,2
[1]

θ3,1
[1]

θ3,2
[1]

θ1
[2]

θ2
[2]

xi

a1,i
[1]

a2,i
[1]

a3,i
[1]

a1,i
[2]

a2,i
[2]

yi

Figure 4.2: Diagram of a multilayer perceptron with two hidden layers, m = 3 and r = 2.

After these two introductory examples of MLPs, they can be defined in a more

formal and general fashion. As before, y denotes the response variable, and yi

denotes the i-th element of y. Once again, X 2 R
n⇥p denotes the data matrix;

xi 2 R
p denotes the i-th row in X, representing the values of the features for

the i-th element in the data; x(k) 2 R
n denotes the k-th column in X; and x(k)

i

denotes the k-th column-wise element and the i-th row-wise element.

A multilayer perceptron can have any integer number of layers, and this number

will be denoted by L. The number of nodes of each layer l will be denoted by

n[l]. And the activation function for each layer l will be denoted by �[l](·), for
l 2 {1, . . . , L}. The activation function for the last layer will be denoted by �(·),
as in the binary classification example. The parameter that connects the j-th node

from the (l�1)-th layer with the k-th node in the l-th layer is denoted by ✓[l]j,k and,

as before, a[l]k,i denotes the result of the activation function corresponding to the

l-th layer and the i-th observation, for k 2
�
1, . . . , n[l]

 
; where ✓[l]0,k is the bias term

31



Chapter 4: Artificial Neural Networks

of the k-th node in the l-th layer. This notation can be summarized as follows,

a[l]k,i = �[l]

0

@✓[l�1]
0,k +

n[l�1]X

j=1

✓[l�1]
j,k a[l�1]

j,i

1

A (4.5)

for k 2
�
1, . . . , n[l]

 
, j 2

�
1, . . . , n[l�1]

 
, l 2 {1, . . . , L} and i 2 {1, . . . , n}.

To be consistent, a[0]k,i is defined as x[k]
i , hence, a[0]

k = x(k) 2 R
n; and a[0]0,i = 1 for

all i 2 {1, . . . , n}, so a[0]
0 is a vector of ones of dimension n and n[0] is the number

of features, i.e., n[0] = p.

In general, a feed-forward neural network or multilayer perceptron with L hid-

den layers is such that

yi = �

0

@✓[L]
0,1 +

n[L]X

j=1

✓[L]
j,1a

[L]
k,i

1

A , (4.6)

where equation (4.5) must be held. As a way to summarize the whole notation, a

multilayer perceptron with parameters ⇥ and data matrix X will be denoted as

MLP (X,⇥), where parameter ⇥ is a general way to refer to all parameters ✓[l]j,k
for k 2

�
1, . . . , n[l]

 
, j 2

�
1, . . . , n[l�1]

 
and l 2 {1, . . . , L}.

Figure 4.3 shows an example of an architecture with 2 hidden layers (L = 2), 4

features (p = n[0] = 4), 3 nodes in the first hidden layer (n[1] = 3) and 4 nodes in

the second hidden layer (n[2] = 4).

32



Chapter 4: Artificial Neural Networks

θ1,1
[0]

θ1,2
[0]

θ1,3
[0]θ2,1
[0]

θ2,2
[0]

θ2,3
[0]

θ3,1
[0]

θ3,2
[0]

θ3,3
[0]θ4,1
[0]

θ4,2
[0]

θ4,3
[0]

θ1,1
[1]

θ1,2
[1]

θ1,3
[1]

θ1,4
[1]

θ2,1
[1]

θ2,2
[1]

θ2,3
[1]

θ2,4
[1]

θ3,1
[1]

θ3,2
[1]

θ3,3
[1]

θ3,4
[1]

θ1,1
[2]

θ2,1
[2]

θ3,1
[2]

θ4,1
[2]

xi
(1)

xi
(2)

xi
(3)

xi
(4)

a1,i
[1]

a2,i
[1]

a3,i
[1]

a1,i
[2]

a2,i
[2]

a3,i
[2]

a4,i
[2]

yi

Figure 4.3: Diagram of a multilayer perceptron with two hidden layers using the general nota-

tion with L = 2, p = n[0] = 4, n[1] = 3 and n[2] = 4.

In the ANN literature, the most common approach to estimate the network pa-

rameters is the loss function minimization approach. In most cases, this approach

results in the same estimate as in the maximum likelihood approach because of the

way in which loss functions are defined. Hyperparameters, such as the number of

layers and the number of neurons, are usually chosen by a cross-validation scheme,

or with a validation set.

As mentioned in Chapter 2, when the response variable is continuous, the

33



Chapter 4: Artificial Neural Networks

quadratic loss is often used, and it is equivalent to the maximization of a Gaus-

sian likelihood function. In the case of a binary classification problem, the binary

entropy loss defined in (2.15), is usually used, and it is equivalent to maximizing

the likelihood of independent Bernoulli response variables.

In the case of a multiple classification problem, the cross-entropy loss is extended

to accommodate for more classes using the same maximum likelihood idea. In a

K class classification problem, the loss is defined as

L(⇥) = �
nX

i=1

2

4
KX

j=1

yi,j log (ŷi,j)

3

5 (4.7)

where yi,j = 1 if the i-th training point belongs to the j-th class and ŷi,j is the

model’s predicted probability of the i-th training point belonging to the j-th class.

In the Bayesian approach, the idea is the same as was explained in Chapter 2.

Each of the parameters is assigned a prior distribution and the response variable

y is assumed to be generated by a probabilistic model with unknown parameters.

The latter are assumed to be random variables as well, to be able to represent

the uncertainty on their values. For example, in the continuous case, a Gaussian

conditional distribution to y can be assigned, such that

y|⇥,X ⇠ N
�
MLP(X,⇥),�2

�
(4.8)

where MLP(X,⇥) denotes the architecture of a multilayer perceptron with pa-

rameters ⇥ and data matrix X. As was mentioned before, since the ⇥ parameters

can be any real value, it is also common to assign a Gaussian distribution to them,

so that the prior distribution is such that

✓[l]i,k ⇠ N
⇣
µ[l]
i,k,�

[l]
i,k

⌘
. (4.9)

Bayes’ theorem is used to update the knowledge about the parameters given

the data in the following way

p (⇥|X,y) =
p (y|⇥,X) p (⇥|X)

p (y|X)
. (4.10)

34



Chapter 4: Artificial Neural Networks

In the example above, p (y|⇥,X) and p (⇥|X) are the joint density functions

of Gaussian random variables with their corresponding parameter values. To make

predictions, the posterior predictive distribution defined in equation (2.7) is used.

As mentioned in Chapter 3, complex Bayesian models such as Bayesian ANN

can be intractable or too slow for typical numerical approaches such as MCMC.

The reason is that ANNs tend to have a high-dimensional parameter vector, for

which o↵-the-shelf MCMC approaches struggle to reach stationarity of the Markov

Chain. In this sense, dropout, the stochastic regularization technique mentioned in

Chapter 2, can be seen as a variational approximation to a Bayesian neural network

and to a deep Gaussian process [19, 20, 18, 21]. Particularly, applying dropout

before each weight layer in a neural network with arbitrary depth is mathematically

equivalent to a variational approximation that minimizes the KL divergence to the

posterior distribution of a Bayesian neural network. This approximation includes

convolutional neural networks, presented in the next section.

4.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are neural networks with a particular

architecture and are widely used in computer vision problems, such as image clas-

sification or object detection in videos. They were introduced by LeCun in 1989 as

a way to constrain the number of parameters needed to perform automatic image

classification [33]. The main idea is that in images, pixels close to each other tend

to be similar, whereas pixels far away from each other tend to be di↵erent. This

notion of proximity is used by CNN’s architecture, and leverages three concepts:

sparse interactions, parameter sharing and equivariant representations [3, p. 335].

Sparse interactions: In MLPs, every unit is connected to all other units in

the next layer, but in CNNs, only few units are connected to other few of

units. This means fewer parameters and, hence, less memory usage and

faster computation.

Parameter sharing: Di↵erent units share the same set of parameters. The

35



Chapter 4: Artificial Neural Networks

same convolution is used many times in the image and, thus, the number of

parameters is further reduced.

Equivariant representations: The architecture of CNNs provides equivariance

in translations, meaning that if the input is changed, the output is changed

in the same fashion. For example: in an image, if an object is moved in the

input, its representation will be moved in the same way in the output.

4.2.1. Convolution operation

The base of CNNs is the convolution operation. This is a general operation,

but for this work, it will be described assuming that the input is a digital image.

This image is represented as an m⇥ n matrix I, where Ii,j represents the pixel in

the i-th row and j-th column as such

I =

2

666664

I1,1 I1,2 I1,3 . . . I1,n

I2,1 I2,2 I2,3 . . . I2,n
...

...
...

. . .
...

Im,1 Im,2 Im,3 . . . Im,n

3

777775
. (4.11)

The convolution operation uses another matrix called a filter or a kernel, with

dimensions p ⇥ r, where p < m and r < n. This means that the kernel matrix

must be of a lower dimension than the image I. The filter matrix is denoted by

K as

K =

2

666664

✓1,1 ✓1,2 ✓1,3 . . . ✓1,q

✓2,1 ✓2,2 ✓2,3 . . . ✓2,q
...

...
...

. . .
...

✓p,1 ✓p,2 ✓p,3 . . . ✓p,q

3

777775
. (4.12)

The convolution operation between I and K is denoted as I ⇤K, and its result

is another matrix S. Each element of S is defined as

Si,j = (I ⇤K)i,j =
X

k

X

l

Ii+k�1,j+l�1Kk,l. (4.13)

36



Chapter 4: Artificial Neural Networks

An example of this is shown in figure 4.4, in which I is a 7 ⇥ 7 image matrix

and the kernel K is a 3 ⇥ 3 matrix. The result is a 5 ⇥ 5 matrix in which each

element is computed using equation (4.13). For instance, the element on the first

row and fourth column of S, that is, S1,4 is computed as

S1,4 =
3X

k=1

3X

l=1

I1+k�1,4+l�1Kk,l

= I1,4K1,1 + I1,5K1,2 + I1,6K1,3

+ I2,4K2,1 + I2,5K2,2 + I2,6K2,3

+ I3,4K3,1 + I3,5K3,2 + I3,6K3,3

= (1⇥ 1) + (0⇥ 0) + (0⇥ 1)

+ (1⇥ 0) + (1⇥ 1) + (0⇥ 0)

+ (1⇥ 1) + (1⇥ 0) + (1⇥ 1)

= 4.

(4.14)

The rest of the elements are computed in a similar way. It should be noted that

the resulting matrix is smaller than the original image matrix.

Figure 4.4: Example of a convolution operation. Source: https: // github. com/ PetarV-/ TikZ

The convolution kernel in the example only has 9 parameters which are used by

the whole image matrix, and these parameters are usually estimated with data.

37



Chapter 4: Artificial Neural Networks

An image classification problem could be solved by turning the input image into

a long vector, but then this would be fed to a fully connected layer, which would

mean that a large number of parameters would have to be fitted. This is one of the

reasons convolutions are used: instead of estimating a large number of parameters,

the convolution operation needs a small number of parameters (9 in the case of

the example) to be estimated. Additionally, the convolution operation takes into

account the topology of the image input, which has a very local structure [34].

4.2.2. Pooling

When using CNNs, a pooling layer is also usually added after each convolutional

layer. This pooling layer summarizes adjacent pixels, and it is used because it

helps to achieve invariance and reduce the image of the output so that there are

fewer parameters in the next layers [3]. A very commonly used pooling function

is max pooling, which returns the maximum value of a neighborhood of pixels.

An example of max pooling is shown in figure 4.5 for a 4⇥ 4 matrix, resulting in

a 2⇥ 2 matrix after the function is applied.

Figure 4.5: Example of max pooling function. Source: https: // computersciencewiki. org/

index. php/ File: MaxpoolSample2. png

4.2.3. Architecture example

To illustrate how all these concepts are put together, an example of an architec-

ture that is very commonly used in image classification problems is discussed. This

architecture is called the LeNet architecture, and it was introduced by LeCun

38



Chapter 4: Artificial Neural Networks

et al. in 1998 for a digit classification problem [34]. The architecture assumes a

grayscale input image of 32⇥ 32 pixels, which is then fed to 6 convolutional filters

of size 5⇥5, each followed by an activation function and a 2⇥2 max pooling layer,

then 16 convolutional filters of size 5⇥ 5, each with their corresponding activation

functions and then the 2 ⇥ 2 max pooling layer, followed by two fully connected

layers of sizes 120 and 84, and finally a softmax transformation to map to the 10

digit classification problem probabilities.

Figure 4.6: LeNet architecture (picture taken from [34]). The feature maps correspond to the

convolutional filters and the subsampling refers to max pooling.

This chapter described the basic idea of ANNs and CNNs. Chapter 5 will

discuss the Active Learning methodology and Chapter 6 will present numerical

experiments in which the ideas of the previous chapters are used together and

compared with each other.

39



Chapter 5

Active Learning

An active learning problem is one in which the learner is able to select its own

training data so that the performance will be better with less training data. This

is attractive because many times, labeled data is expensive or hard to acquire,

hence the desire to use the available labeled data as e�ciently as possible.

For example, a modeler may have access to a lot of unlabeled data points and

few labeled data points. These labeled data points may be expensive to label by

human annotators, and they also may be used in a supervised learning problem,

but it is desirable to somehow take advantage of the unlabeled data. An active

learning task would be to train a model f̂ with an initial set of labeled data D.

Afterwards, the model (the learner) could choose new data points x⇤ from a pool

of unlabeled data U , to ask to an oracle (e.g., a human annotator) what the

corresponding output y⇤ is, and finally add the pair (x⇤, y⇤) to the training data.

This process would be repeated until certain criteria are met, with the training

set increasing in size with each iteration.

Figure 5.1 shows this cycle in a diagram. The main goal of active learning

is to select which x⇤ to incorporate to the training data [8]. In the end, it is ex-

pected that this procedure leads to a better predictive performance than randomly

selecting new observations to add to the training data.

40



Chapter 5: Active Learning

Figure 5.1: Active learning cycle. A model is trained from the labeled data D, data points are

taken from the unlabeled pool of data U , labeled by an oracle and then added to the training set

of labeled data D in order to retrain the model and continue the cycle. Image taken from [51].

The type of active learning described in the previous example, in which there is

a large collection of unlabeled data U and a small set of labeled data D, is called

pool-based sampling. Pool-based sampling will be the main focus of this work.

There are other types of active learning but, since they are not of interest to this

work, they will not be discussed. However, [44] and [51] provide a good overview

of these techniques and reference to more sources of information.

As mentioned before, in pool-based sampling, a model is trained with labeled

training data from D, and then, new data points are chosen to be labeled from

the unlabeled data pool U . The new data points are chosen using an acquisition

function a(x, f̂) that proposes candidates given a specific criterion. For example,

the model’s prediction uncertainty can be used to select new unlabeled data points.

Usually, one would like to explore the feature space where uncertainty is higher as

this corresponds to providing the learner the most informative feature. Also, some

other entropy-based methods can be used. The new observation x⇤ is chosen so

that it maximizes the acquisition function of all the observations in the pool set.

The role of the acquisition function is to evaluate the gain of information of each

unlabeled data point.

41



Chapter 5: Active Learning

The acquisition functions that will be used and compared in this work are four,

three of which use the posterior predictive distribution. Particularly, the posterior

predictive probability of an observation x⇤ having a label y⇤ belonging to a class

c, denoted as p(y⇤ = c|X,y,x⇤). Because of the definition of these acquisition

functions, they only work in classification problems. The four acquisition functions

are the following:

1. Predictive entropy:

H [y⇤|X,y,x⇤] = �
P

c p(y
⇤ = c|X,y,x⇤) log p(y⇤ = c|X,y,x⇤).

2. Variation ratios: 1�maxy p(y⇤|X,y,x⇤).

3. Bayesian Active Learning by Disagreement (BALD):

H [y⇤|X,y,x⇤]� Ep(✓|X,y) [H [y⇤|x⇤,✓]].

4. Random: Choosing an observation uniformly random from the pool of unla-

beled data U .

Note that predictive entropy and variation ratios can be used with a frequentist

classifier because instead of using the posterior predictive distribution, one can use

the predicted probability of each class. The BALD acquisition function, however,

can only be used with a Bayesian classifier because in the case of a frequentist

classifier, the result of this function is always zero. This is easy to see given the

definition of the acquisition function

H [y⇤|X,y,x⇤]� Ep(✓|X,y) [H [y⇤|x⇤,✓]] , (5.1)

where H [y⇤|X,y,x⇤] is the predictive entropy, previously defined as

H [y⇤|X,y,x⇤] = �
X

c

p(y⇤ = c|X,y,x⇤) log p(y⇤ = c|X,y,x⇤). (5.2)

In the Bayesian case, one has a positive number of samples from the posterior

predictive distribution, so the second part of equation (5.1), i.e., the expected

value Ep(✓|X,y) [H [y⇤|x⇤,✓]] is approximated by averaging the predictive entropy

42



Chapter 5: Active Learning

of each predictive sample. This way, the BALD acquisition function is computed

by taking the di↵erence of this quantity and the first part of equation (5.1). In the

frequentist case, there is only one point estimate, so that di↵erence is zero, hence

the BALD acquisition function is always zero.

If the data points in the pool of unlabeled data points U are in random order,

then using BALD as an acquisition function with a frequentist classifier is equiva-

lent to a random acquisition function because all data points in U have the same

acquisition function value.

A simple example of the active learning cycle was implemented in the R pro-

gramming language. This figure summarizes the results of a two class classifica-

tion problem using a frequentist logistic regression model and the variation ratios

acquisition function. Similarly to what was done in Chapter 2, a data set was

generated with a data matrix X 2 R
n⇥10 with n = 1000 such that x(k)

i ⇠ N(0, 1)

for each i 2 {1, ..., n} and k 2 {1, ..., 10}. Then an auxiliary vector was computed,

pi =
1

1+exp
⇣
�

P10
k=1 ✓kx

(k)
i

⌘ , with each ✓k sampled from a continuous uniform distri-

bution from -5 to 5. Finally, the response variable y was built simulating Bernoulli

random variables such that yi ⇠ Bern(pi).

For the example, an initial random training set of 20 observations D was gen-

erated, with 10 examples of each class. Of the 980 points that were not used, 300

were used as a validation set, and the remaining 680 points were used as the un-

labeled pool set U . Then, 180 acquisition iterations were made, in each iteration

training a new logistic regression model, making predictions on the pool set U , and
using these predictions to compute the frequentist variation ratios and to choose

the data point with the highest value so that it would be added to the training

set set D. In order to remove sampling noise, this process was repeated 50 times,

each time choosing di↵erent initial random training, validation and pool sets. The

same was done using a random acquisition function to compare with the active

learning setting.

Figure 5.2 shows the mean accuracy on the validation set in each acquisition

iteration, with the light colors showing the 25-th and 75-th percentiles of the

43



Chapter 5: Active Learning

accuracies in each iteration. It is clear that using active learning leads to a better

performance of the model with less data compared to a random sample from U .

0.75

0.80

0.85

0.90

0.95

50 100 150 200
Number of data points

Ac
cu

ra
cy Type of

acquisition
Active Learning
Random

Figure 5.2: Accuracies of a logistic regression model using a variation ratios acquisition func-

tion (blue) and a random acquisition function (red).

To see what kind of points the acquisition function chooses, another example

was implemented. This example is very similar to the last one, but in this case the

parameter vector ✓ is a two-dimensional vector such that ✓ = [1, 1]T . Again, 1000

points were generated and an initial random training set of 10 training examples

(5 of each class) was randomly chosen from these 1000 points. This was followed

by 70 active learning iterations, using both a variation ratios acquisition function

and a random acquisition function.

Figure 5.3 shows the results of this process. On the left, the generated data

are shown, with the thin black line representing the real decision boundary of the

generated data. The center image highlights the data points selected by the ran-

dom acquisition function. Again, the thin black line is the real decision boundary,

whilst the bold dashed black line is the decision boundary of the trained model.

The right image highlights the data points selected by the variation ratios acqui-

sition function, where the black lines represent the same as in the center image. It

44



Chapter 5: Active Learning

can be seen that when using the variation ratios acquisition function, the selected

data points lie close to the decision boundary, whilst using the random acquisition

function, points from all the domain are chosen. This is because points lying close

to the decision boundary give more information than points in the outer parts of

the quadrant. In the end, the variation ratios acquisition function helped choose

the points that lead to a better approximation to the real decision boundary.

−2

0

2

−4 −2 0 2 4

x 2

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

−2

0

2

−4 −2 0 2 4
x1

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

−2

0

2

−4 −2 0 2 4

Figure 5.3: Comparison of points chosen by a random acquisition function and a variation

ratios acquisition function.

This chapter provided a brief introduction to pool-based active learning and

four acquisition functions. Chapter 6 will show di↵erent implementations of active

learning problems using Convolutional Neural Networks and di↵erent acquisition

functions. It will also compare the predictive performance of these acquisition

functions in three di↵erent data sets.

45



Chapter 6

Experimental results

In the previous chapters, a brief overview of machine learning, Bayesian in-

ference, variational inference, ANNs, and active learning was presented. In this

chapter, three experiments are presented in the context of Bayesian active learn-

ing. These consist of well known machine learning benchmarks, such as the MNIST

dataset [34], the CIFAR-10 dataset [30], and a dataset of cat and dog pictures [13].

In all the experiments, a deep convolutional network was trained to classify

the images in each data set, as was done in [22]. The experiment setup was very

similar to the one in Chapter 5, having each model trained with an initial small

random set of images. Then, an acquisition function is used to select new images

from a pool set of unlabeled data U . This allows to increase the training set D and

finally train a new model with this new bigger data set of labeled images. Some

of the images with highest uncertainty according to the acquisition functions are

shown in Appendix B.

As discussed in Chapter 5, a testbed of acquisition functions is considered.

That is, in all experiments the Bayesian predictive entropy, frequentist predictive

entropy, Bayesian variation ratios, frequentist variation ratios, BALD, and ran-

dom acquisition functions are used to choose points to extend the training set.

The Bayesian CNNs were trained using the dropout variational approximation

46



Chapter 6: Experimental results

mentioned in Chapter 4.

All models were trained using Keras [7] with Tensorflow [1] as a backend. Most

of the code is writen in R with some Python scripts called from R using the

reticulate package [2].

6.1. MNIST dataset

The MNIST dataset is a collection of 70,000 labeled images of 32 ⇥ 32 pixels

representing handwritten digits in black and white. The dataset has a pre-selected

test set consisting of 10,000 images. Figure 6.1 shows 100 randomly chosen digits

from the training set.

Figure 6.1: Example of 225 randomly chosen digits from the MNIST train set.

The MNIST dataset was used in the paper of Gal, Islam, and Ghahramani to

47



Chapter 6: Experimental results

compare the performance of approximate Bayesian CNNs with frequentist CNNs

in the context of Active Learning. This experiment was replicated in this work by

using the same architecture that was explained in [22].

The experiment consists in starting with a random but balanced sample of 20

images from the MNIST dataset. Next, a CNN is trained with these images, to

subsequently take a random sample of 5000 images from the pool set to save com-

putation time. Afterwards, the probability that each of the 5000 images belongs

to each of the 10 classes is computed. Finally, the 10 images that maximize the

acquisition function are acquired and added to the training set. This process was

repeated in 100 acquisition steps for each acquisition function. This whole process

is repeated 3 times with di↵erent initial images to have the results averaged and

reduce the noise inherent in the stochasticity of the process.

The acquisition functions used in the original paper are the Bayesian predic-

tive entropy, frequentist predictive entropy, Bayesian variation ratios, frequentist

variation ratios, BALD, random, and an additional one called “Mean STD” which

was not implemented in this work because of its bad performance in the original

paper.

The architecture of the CNN used was convolution-relu-convolution-relu-max

pooling-dropout-dense-relu-dropout-dense-softmax, with 32 convolution kernels,

4⇥4 kernel size, 2⇥2 pooling, dense layer with 128 units, and dropout probabilities

0.25 and 0.5. Dropout was only applied to densely connected layers. The CNNs

were trained for 50 epochs. For the Bayesian acquisition functions, 100 posterior

predictive distribution points were sampled by using the dropout trick mentioned

in Chapter 4.

The results of the Bayesian and random acquisition functions can be seen in

figure 6.2, where the results of our implementation are shown on the left and

the original article’s results are shown on the right. Our results are very similar

with the article’s results: apparently, using the variation ratios results in a slightly

better performance than BALD or predictive entropy, and more importantly, using

the Bayesian acquisition functions results in a much better performance than using

a random acquisition function.

48



Chapter 6: Experimental results

(a) Our results. (b) Paper’s results.

Figure 6.2: Accuracy of models in each acquisition step. The left picture shows our implemen-

tation and the right picture shows Gal, Islam, and Ghahramani’s implementation. In the latter

case, Max Entropy refers to predictive entropy. The x axis is the number of images.

Our implementation achieved the goal of outperforming a random acquisition

function. However, the results di↵er when one compares the Bayesian and the

frequentist approach. The article’s authors claim that the use of an approximate

Bayesian approach in the acquisition process of Active Learning leads to better

accuracy with fewer images, but in our implementation this does not happen. This

can be seen with more detail in figures in 6.3 and 6.4 that show our results on

the left and the paper’s results on the right. In the original paper, the frequentist

acquisition functions lead to a worse performance than their Bayesian counterparts,

while in our implementation there is no evidence of distinction between the two.

For example, with predictive entropy in figure 6.3, the results seem to be back-

ward and the frequentist acquisition function seems to have a slightly better perfor-

mance that the Bayesian one. Another di↵erence is that the frequentist acquisition

function in the original article achieves a 90% accuracy with around 300 images,

while in our implementation this accuracy is first achieved with around 200 images.

49



Chapter 6: Experimental results

(a) Our results. (b) Paper’s results.

Figure 6.3: Accuracy of approximate Bayesian and frequentist models in each acquisition step

using predictive entropy as acquisition function. The left picture shows our implementation and

the right picture shows Gal, Islam, and Ghahramani’s implementation. In the latter case, Max

Entropy refers to predictive entropy.

Figure 6.4 shows the results of the variation ratios acquisition functions. While

the roles of the frequentist and Bayesian acquisition functions are not reversed as

in the previous case, there is apparently no distinction between the two acquisition

functions. Moreover, in the original article, a 90% accuracy is first achieved using

the frequentist acquisition function with a little below 300 images, while in our

implementation this accuracy is first achieved with around 200 images. Another

di↵erence is that with 1000 images and using the frequentist acquisition function,

the authors’ accuracy is close to 96%, while in our implementation it is close to

98%.

50



Chapter 6: Experimental results

(a) Our results. (b) Paper’s results.

Figure 6.4: Accuracy of approximate Bayesian and frequentist models in each acquisition step

using variation ratios as acquisition function. The left picture shows our implementation and

the right picture shows Gal, Islam, and Ghahramani’s implementation.

6.2. Cats and dogs dataset

The cats and dogs dataset was first used for a CAPTCHA developed by Mi-

crosoft Research called Asirra [13]. It is a collection of 25,000 pictures of size

64 ⇥ 64, of which half are cats and half are dogs. Figure 6.5 shows 30 randomly

chosen cats and 30 randomly chosen dogs from the training set.

51



Chapter 6: Experimental results

Figure 6.5: Example of 60 randomly chosen cats and 30 randomly chosen dogs from the dataset.

The process of this experiment is very similar to the one followed in the MNIST

dataset. First, a balanced set of 100 images was randomly chosen and used to

train a first model. Then a random sample of 2000 images was chosen from the

pool set, from which the predicted probabilities of belonging to each class were

computed. Subsequently, the 50 images with the highest acquisition function value

were chosen and added to the training set. The final number of acquisition steps

was 50 and, once more, the whole process was repeated 3 times with di↵erent

initial images.

The architecture used was convolution-relu-convolution-relu-max pooling-dropout-

convolution-relu-max pooling-dropout-dense-relu-dropout-dense-softmax with 32

convolution kernels, 3⇥ 3 kernel size, 2⇥ 2 pooling, dense layer with 64 units, and

dropout probabilities 0.25, 0.25 and 0.5. The CNNs were trained for 200 epochs.

Once more, for the Bayesian acquisition functions 100 posterior predictive distri-

bution points were sampled by using the dropout trick.

The results of the Bayesian and random acquisition functions can be seen in

52



Chapter 6: Experimental results

figure 6.6. In this case, it is di�cult to say that using any of the Bayesian acqui-

sition functions results in a better performance than using a random acquisition

function. In the last steps it is clear that the variation ratios acquisition function

results in a better accuracy, but the di↵erence is not as abrupt as it was in the

MNIST dataset.

Figure 6.6: Accuracy of models in each acquisition step in the cats and dogs dataset.

Figure 6.7 shows the comparison of the frequentist and Bayesian acquisition

functions, with predictive entropy on the left and variation ratios on the right. As

with the MNIST dataset, there is no clear distinction between the frequentist and

the Bayesian acquisition functions.

53



Chapter 6: Experimental results

(a) Predictive entropy. (b) Variation ratios.

Figure 6.7: Accuracy of models in each acquisition step in the cats and dogs dataset.

6.3. CIFAR-10 dataset

The CIFAR10 was introduced in 2009. The name stands for the Canadian

Institute for Advanced Research, who funded the project in which it was first used

[30]. It consists of 60,000 color images of size 32⇥32 representing 10 di↵erent types

of objects, these being airplane, automobile, bird, cat, deer, dog, frog, horse, ship

and truck. The classes are balanced in the dataset, meaning that each class has

the same number of images. Of the 60,000 images, 50,000 are used as a training

set and the rest as test set. The training set and the test are also balanced. Figure

6.8 shows 200 randomly chosen images from the training set.

54



Chapter 6: Experimental results

Figure 6.8: Example of 200 randomly chosen images from the dataset.

The process of this last experiment is very similar to the ones followed in the

two previous datasets. First, as in the cats and dogs dataset, a balanced set of

100 images was randomly chosen and used to train a first model. Then a random

sample of 5000 images was chosen from the pool set, from which the predicted

probabilities of belonging to each class were computed. Afterwards, the 1000

images with the highest acquisition function value were chosen and added to the

training set. The final number of acquisition steps was 40 and, as before, the whole

process was repeated 3 times with di↵erent initial images.

The architecture used was convolution-relu-convolution-relu-max pooling-dropout-

convolution-relu-convolution-relu-max pooling-dropout-dense-relu-dropout-dense-

softmax with 32 convolution kernels, 3 ⇥ 3 kernel size, 2 ⇥ 2 pooling, dense layer

with 512 units, and dropout probabilities 0.25, 0.25 and 0.5. The CNNs were

trained for 100 epochs. Like in the previous experiments, for the Bayesian acqui-

sition functions 100 posterior predictive distribution points were sampled by using

the dropout trick.

The results of the Bayesian and random acquisition functions can be seen in

figure 6.9. Here, the di↵erence between the random acquisition function and the

55



Chapter 6: Experimental results

rest is a little clearer than in the cats and dogs dataset, especially from around

the 13,000 image mark onward, but it is not as clear as in the MNIST dataset.

Figure 6.9: Accuracy of models in each acquisition step in the CIFAR10 dataset.

Figure 6.10 shows the comparison of the frequentist and Bayesian acquisition

functions, with predictive entropy on the left and variation ratios on the right. As

with the MNIST and with the cats and dogs datasets, the distinction between the

frequentist and the Bayesian acquisition functions is not clear.

56



Chapter 6: Experimental results

(a) Predictive entropy. (b) Variation ratios.

Figure 6.10: Accuracy of models in each acquisition step in the CIFAR10 dataset.

6.4. Discussion

In this chapter, the results of several Active Learning experiments using di↵erent

acquisition functions in three di↵erent datasets were shown. In the MNIST dataset

there is a clear improvement in using the predicted probabilities of a trained model

to select the images to add to a training set when compared to a random selection.

In the CIFAR10 dataset there seems to be a small performance improvement when

using the non-random acquisition functions. In the cats and dogs dataset there is

an even smaller performance improvement, but it is not as clear as in the MNIST

dataset.

However, it should be noted that in the case of the CIFAR10 and the cats and

dogs datasets, the problem is much more high-dimensional than in the MNIST

case. In higher dimensions there is more space between images, which makes the

active learning procedure behave more similarly to a random acquisition function.

In all cases, there is no clear distinction between using an approximate Bayesian

model against a frequentist one, as the accuracies did not seem to be di↵erent. This

again may be because of the dimensionality of the problems that are being solved.

57



Chapter 6: Experimental results

In general, finding posterior distributions of high-dimensional spaces is di�cult.

In addition to this, the theoretical approximation of Dropout to a Bayesian CNN

does not specify the quality of the approximation. Perhaps in the cases that were

tested in this work, the variational approximation is not good and, therefore, the

uncertainty given by the Bayesian acquisition functions is very similar to that of

the frequentist ones.

In the following chapter, final concluding remarks are discussed.

58



Chapter 7

Conclusions

In this work, three Bayesian acquisition functions were compared with two fre-

quentist acquisition functions through a series of experiments in three di↵erent

image datasets: the MNIST, the CIFAR10 and a cats and dogs dataset. An at-

tempt was made to replicate the experiments performed with the MNIST dataset

in [22], but failed in obtaining the same results in the comparison of approximate

Bayesian and frequentist acquisition functions. However, the attempt was suc-

cessful in achieving a better performance using a non-random acquisition function

in contrast to a random one. The same experimental framework was used in the

other two datasets. In the CIFAR10 dataset there seems to be a small perfor-

mance improvement when using the non-random acquisition functions and in the

cats and dogs dataset there is an even smaller performance improvement. As in

the MNIST dataset, in these two other datasets there is no clear distinction be-

tween using an approximate Bayesian model against a frequentist one. The cause

of this may be that the variational approximation to the posterior distribution is

not very good. With an improvement of this approximation, the results may turn

out to be better.

The use of a full posterior predictive distribution is of use in many di↵erent

areas. One such area is autonomous vehicles, in which knowledge of the model’s

59



Chapter 7: Conclusions

predictive uncertainty can help prevent accidents. If a model is uncertain about a

prediction, then human assistance can be requested [16, 29, 37]. Another area of

opportunity lies in adversarial attacks, in which the use of Bayesian CNNs helps

in providing less confident predictions for adversarial examples [35, 48, 53]. An

additional area is the use of uncertainty for Reinforcement Learning to accelerate

learning [16]. One more general and very broad area of opportunity is in automatic

classification systems using machine learning to make decisions, such as a post

o�ce automatically sorting letters according to a zip code, in which the model

can decide to ask for the help of a human when the it is uncertain about certain

predictions [16].

The code used to write this document is available in https://github.com/

mariobecerra/msc_thesis.

And the code used for the experiments is available in https://github.com/

mariobecerra/Active_Learning_CNNs.

60



Appendices

61



Appendix A

Loss function optimization

As mentioned before, in machine learning the goal is to find the parameters that

minimize a loss function such as the one in equation (2.15). In some cases like

linear regression, it is possible to use the first and second order conditions to find

a closed formula to find the parameters; but in many other cases this cannot be

done, like in logistic regression, so we resort to numerical optimization techniques.

The general problem of unconstrained optimization [42] is

min
✓2Rp

L(✓). (A.1)

In machine learning, L is usually a convex loss function and ✓ is a parameter

or vector of parameters. A solution is a vector ✓⇤ called local minimizer, which

minimizes the function L in a neighborhood around ✓⇤. Formally, a vector ✓⇤ is a

local minimizer if there exists a neighborhood V of ✓⇤ such that L(✓⇤)  L(✓) for

all ✓ 2 V.

The su�cient second order conditions are used in numerical optimization. Sup-

pose that the Hessian matrix r2L is continuous in an open neighborhood of ✓⇤,

that the gradient rL(✓⇤) = 0 and that r2L(✓⇤) is positive definite; then ✓⇤ is a

local minimizer of L. In general, all algorithms search for a point ✓⇤ such that

rL(✓⇤) = 0 [42].

62



Appendix A: Loss function optimization

Many numerical optimization algorithms are iterative, such as coordinate de-

scent, Newton and quasi-Newton methods, gradient free methods, and gradient

descent. Coordinate descent algorithms work by fixing all but one parameter in

each iteration and then minimizing the loss function with respect to the remaining

parameter [14, 56]. Newton methods use a second-order Taylor series approxima-

tion to the loss function and iteratively descend by computing the Hessian matrix

[42, p. 22]. Quasi-Newton methods use this same idea, but instead of comput-

ing the Hessian matrix exactly, they use some approximation to it [6] [42, p. 23].

Gradient free algorithms are used when the gradient of the loss function is not

available, which could be for computational reasons, for unavailability, or practi-

cal reasons [49]. They include simulated annealing, swarm algorithms and genetic

algorithms. Gradient descent is explained in the next subsection.

A.0.1. Gradient descent (GD)

Gradient descent belongs to a family of optimization algorithms called line

search algorithms. In each iteration, these algorithms search for a direction in

which to move and then update the current value in accordance to that direction

[42, p. 19]. That is, in the k-th iteration, ✓ has the value ✓k, and the algorithms

look for a direction pk to update to a new value ✓k+1 = ✓k +↵kpk, where ↵k > 0

is the “distance” in which the algorithm moves toward direction pk, and is called

step length. Once that the value of the parameter is updated, the algorithm

finds a new direction in which to move forward and then updates the parameter

value again. This is done until a stopping criterion is met. This usually is that

the gradient vector norm is smaller than a certain small positive scalar.

In gradient descent, the direction pk in which the algorithm moves is the maxi-

mum descent direction, that is, the negative of the gradient �rL(✓k). So, in each

iteration ✓ is updated as such

✓k+1 = ✓k � ↵krL(✓k). (A.2)

Choosing the step length ↵k is problematic because it is desirable to find a value

such that the function L decreases as much as possible, but it is not desirable to

63



Appendix A: Loss function optimization

spend too much time choosing the value. The best option is the global minimizer

of the auxiliary function �(↵k) = L(✓k + ↵kpk), but it may be too expensive

to compute [42, p. 31]. Generally, heuristics are used to choose the sequence of

values for ↵k and try which one satisfies those conditions. One of those conditions

is called Armijo conditions, and finds the ↵k that allows a su�cient descent in the

function L, measured as

L(✓k + ↵kpk)  L(✓k) + c1↵krL(✓k)
Tpk, (A.3)

for a constant c1 2 (0, 1). Usually c1 is small, such as 10�4. This condition may

not be enough, because for very small values of ↵k the condition can be met, and

very small step lengths are not always desirable. One way to fix this is to use

backtracking, which consists in choosing a big value of ↵k (such as ↵k = 1), and

then an iterative sub-algorithm is initiated to decrease the value of ↵k until the

Armijo condition is met. Another way to choose the step length ↵k is using the

outer product of the gradient with itself, as shown in [12].

In the following paragraphs, an example of logistic regression is shown to un-

derstand how gradient descent works.

The loss function to be minimized, defined in equation (2.15), is

L(✓) = �
nX

i=1

h
yi log(�(✓

Txi)) + (1� yi) log(1� �(✓Txi))
i

= �
nX

i=1

`i(✓)

(A.4)

where �(·) is the logistic sigmoid function, ✓Txi =
Pp

j=0 ✓jxij , xi1 = 1 for all

i 2 {1, ..., n} and `i(✓) is defined as

`i(✓) = yi log(�(✓
Txi)) + (1� yi) log(1� �(✓Txi)). (A.5)

Taking the partial derivatives of the loss function with respect to the parameters

the result is
@L

@✓j
= �

nX

i=1

@`i
@✓j

(A.6)

64



Appendix A: Loss function optimization

and, using the fact that �0(w) = �(w)(1��(w)), then each partial derivative from

the sum

@`i
@✓j

=
yi�0(✓Txi)xij

�(✓Txi)
+

(1� yi)(�1)�0(✓Txi)xij

1� �(✓Txi)

=
�0(✓Txi)xijyi

�(✓Txi)
� (1� yi)�0(✓Txi)xij

1� �((✓Txi))

= �0(✓Txi)xij

✓
yi

�(✓Txi)
� 1� yi

1� �(✓Txi)

◆

= �0(✓Txi)xij

 
yi � yi�(✓

Txi)� �(✓Txi) + yi�(✓
Txi)

�(✓Txi)(1� �(✓Txi))

!

= xij(yi � �(✓Txi)).

(A.7)

Finally, the partial derivative is

@L

@✓j
= �

nX

i=1

xij(yi � �(
pX

j=0

✓jxij)). (A.8)

Hence, the gradient descent direction for each iteration is

r✓L =

✓
@L

@✓1
, ...,

@L

@✓p

◆T

. (A.9)

To minimize the loss function, an initial vector of parameters ✓0 2 R
p is chosen,

and in each iteration this vector is updated using equation (A.2) until certain

criteria are met.

This algorithm was implemented in the R programming language [45] by gen-

erating a data matrix X 2 R
n⇥1 with n = 1000 such that xi ⇠ N(0, 1) for each

i 2 {1, ..., n}. Then an auxiliary vector was computed, pi = 1

1+exp
⇣
�✓0�✓1x

(1)
i

⌘ ,

with ✓0 = �5 and ✓1 = 5. Finally, the response variable y was built simulat-

ing Bernoulli random variables, such that yi ⇠ Bern(pi). The implementation is

compared with the result of the glm package.

The initial vector of parameters was ✓0 = (0, 0)T and a constant value of ↵k =

0.1 was used. The stopping criterion was that the norm of the gradient, i.e.

kr✓L(✓)k, should be less than 10�8, this being the approximate square root of

65



Appendix A: Loss function optimization

the double-precision floating-point format; or that the norm of the di↵erence of

the parameters from one iteration to the other, i.e. k✓k+1 � ✓kk, should be less

than 10�8. This was achieved after 3,704 iterations.

Figure A.1 shows the results of the implementation. On the left, the value

of the loss function in each iteration can be seen. On the right, the parameter

vector’s value in each iteration. The red dot is the value of the estimate by the

glm package. It can be seen that the implemented algorithm converges to this

value.

Figure A.1: Example of gradient descent for logistic regression.

A.0.2. Stochastic gradient descent (SGD)

In machine learning it is common to assume that observations are indepen-

dent and identically distributed, thus, it is also common to find the need to solve

optimization problems of the form

min
✓2Rp

L(✓), with L(✓) =
1

n

nX

i=1

`i(✓). (A.10)

That is, the loss function that needs to be minimized is usually a sum or average

of several indexed functions in which each indexed function depends only on one

observation of the data set. For example, in logistic regression, the loss function

that is expressed in that way.

66



Appendix A: Loss function optimization

Gradient descent uses iterations in the form

✓k+1 = ✓k � ↵krL(✓k) := ✓k � ↵k

n

nX

i=1

r`i(✓k), (A.11)

which involves evaluating n gradients (one for each observation) and then taking an

average. In some cases of machine learning, n can be really big; hence computing

all of those gradients in each iteration is expensive. That is why methods such as

SGD are used, in which the number of gradients to compute does not depend on

n but instead it is constant. SGD uses iterations of the form

✓k+1 = ✓k � ↵kr`ik(✓k), (A.12)

where ik 2 {1, 2, ..., n} is randomly chosen. The gradient r`ik(✓k) is an unbiased

estimator of rL(✓k). This way, each iteration is computationally inexpensive be-

cause it involves the computation of only one gradient. It can happen that some

r`ik(✓k) in particular does not give a descent direction from ✓k, but on aver-

age they yield descent directions. Thus, the sequence {✓0,✓1, ...}, under certain

conditions, leads to a minimizer ✓⇤.

A.0.3. Mini-batch gradient descent

An approach that lies between the two extremes of computing the gradients of

all observations and the gradient of just one observation is mini-batch gradient

descent. In mini-batch gradient descent, one chooses a fixed integer l, then the

data set is divided in batches of size l, where the values in each batch are randomly

chosen. Then, each of these batches is used to compute the gradient and update

the values of the parameters. Usually l is a small number compared to the size

of the data set, but big enough so that the gradient estimation is not too noisy,

such as l = 32 or l = 100. This way, each iteration is cheaper because it involves

the computation of only l gradients instead of n, with l << n. Stochastic gradient

descent (SGD) is just mini-batch gradient descent with l = 1.

So, mini-batch gradient descent updates the value of the parameters in each

67



Appendix A: Loss function optimization

iteration as such

✓k+1 = ✓k � ↵k

n

lX

i=1

r`i(✓k). (A.13)

We implemented mini-batch gradient descent for logistic regression in R and

test it with the same simulated data set as in the previous example. Figure A.2

shows the results of the implementation. Each of the plots shows the values of

the parameters in each iteration, but the di↵erence in each plot is the size of the

mini-batch l. It is clear that with bigger l, the descent directions are less noisy,

but in the end they all converge to more or less the same value.

Figure A.2: Example of mini-batch gradient descent for logistic regression comparing mini-

batch sizes.

68



Appendix B

Images with highest

uncertainty

Figures B.1, B.2 and B.3 show the most uncertain examples for a Bayesian CNN

using the variation ratios acquisition function with the MNIST, cats and dogs, and

CIFAR10 datasets, respectively.

In the case of the MNIST and cats and dogs datasets, some unusual examples

can be seen. For instance, in the case of the third row and first column of figure

B.1, it is not clear what number it is. The same happens with the ninth row and

second column. In figure B.2, the element in the second row and second column is

a cat on books in a book-shelf, but it is not clear at first glance. And the picture

in the fourth row and fourth column is peculiar because it has a star shape. On

the contrary to the previous two datasets, in the case of the cats and dogs dataset,

figure B.3 does not show any obvious deviation from the rule.

69



Appendix B: Images with highest uncertainty

Figure B.1: Images with highest uncertainties in the MNIST dataset.

Figure B.2: Images with highest uncertainties in the cats and dogs dataset.

70



Appendix B: Images with highest uncertainty

Figure B.3: Images with highest uncertainties in the CIFAR10 dataset.

71



Bibliography

[1] Mart́ın Abadi and Agarwal A Barham P TensorFlow. ((Large-scale machine

learning on heterogeneous distributed systems)). In: Proceedings of the 12th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI’16)(Savannah, GA, USA. 2016, pp. 265–283.

[2] JJ Allaire, Kevin Ushey, and Yuan Tang. reticulate: Interface to ’Python’.

R package version 1.10. 2018. url:

https://CRAN.R-project.org/package=reticulate.

[3] Yoshua Bengio, Ian J Goodfellow, and Aaron Courville. ((Deep learning)).

In: (2015).

[4] Christopher M.. Bishop. Pattern recognition and machine learning.

Springer, 2006.

[5] David M Blei, Alp Kucukelbir, and Jon D McAuli↵e. ((Variational

inference: A review for statisticians)). In: Journal of the American

Statistical Association 112.518 (2017), pp. 859–877.

[6] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. ((A limited

memory algorithm for bound constrained optimization)). In: SIAM Journal

on Scientific Computing 16.5 (1995), pp. 1190–1208.

[7] François Chollet et al. Keras. https://keras.io. 2015.

[8] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. ((Active

learning with statistical models)). In: Journal of artificial intelligence

research 4 (1996), pp. 129–145.

72



Bibliography

[9] Richard T Cox. ((Probability, frequency and reasonable expectation)). In:

American journal of physics 14.1 (1946), pp. 1–13.

[10] Richard T Cox. ((The algebra of probable inference)). In: American Journal

of Physics 31.1 (1963), pp. 66–67.

[11] John Denker and Yann Lecun. ((Transforming Neural-Net Output Levels to

Probability Distributions)). In: Advances in Neural Information Processing

Systems 3. Citeseer. 1991.

[12] John Duchi, Elad Hazan, and Yoram Singer. ((Adaptive subgradient

methods for online learning and stochastic optimization)). In: Journal of

Machine Learning Research 12.Jul (2011), pp. 2121–2159.

[13] Jeremy Elson, John JD Douceur, Jon Howell, and Jared Saul. ((Asirra: a

CAPTCHA that exploits interest-aligned manual image categorization)).

In: (2007).

[14] Jerome Friedman, Trevor Hastie, Holger Höfling, Robert Tibshirani, et al.

((Pathwise coordinate optimization)). In: The Annals of Applied Statistics

1.2 (2007), pp. 302–332.

[15] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of

statistical learning. Vol. 1. Springer series in statistics Springer, Berlin,

2001.

[16] Yarin Gal. ((Uncertainty in deep learning)). In: University of Cambridge

(2016).

[17] Yarin Gal and Zoubin Ghahramani. ((A theoretically grounded application

of dropout in recurrent neural networks)). In: Advances in neural

information processing systems. 2016, pp. 1019–1027.

[18] Yarin Gal and Zoubin Ghahramani. ((Bayesian convolutional neural

networks with Bernoulli approximate variational inference)). In: arXiv

preprint arXiv:1506.02158 (2015).

[19] Yarin Gal and Zoubin Ghahramani. ((Dropout as a Bayesian

approximation: Insights and applications)). In: Deep Learning Workshop,

ICML. Vol. 1. 2015, p. 2.

73



Bibliography

[20] Yarin Gal and Zoubin Ghahramani. ((Dropout as a Bayesian

Approximation: Representing Model Uncertainty in Deep Learning)). In:

arXiv preprint arXiv:1506.02142 (2015).

[21] Yarin Gal and Zoubin Ghahramani. ((On modern deep learning and

variational inference)). In: Advances in Approximate Bayesian Inference

workshop, NIPS. Vol. 2. 2015.

[22] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. ((Deep Bayesian Active

Learning with Image Data)). In: Bayesian Deep Learning workshop, NIPS.

2016.

[23] Andrew Gelman and Jennifer Hill. Data analysis using regression and

multilevel/hierarchical models. Cambridge university press, 2006.

[24] Andrew Gelman, Hal S Stern, John B Carlin, David B Dunson,

Aki Vehtari, and Donald B Rubin. Bayesian data analysis. Chapman and

Hall/CRC, 2013.

[25] Alex Graves. ((Practical variational inference for neural networks)). In:

Advances in Neural Information Processing Systems. 2011, pp. 2348–2356.

[26] José Miguel Hernández-Lobato and Ryan Adams. ((Probabilistic

backpropagation for scalable learning of bayesian neural networks)). In:

International Conference on Machine Learning. 2015, pp. 1861–1869.

[27] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An

introduction to statistical learning. Vol. 6. Springer, 2013.

[28] Edwin T Jaynes. Probability theory: The logic of science. Cambridge

university press, 2003.

[29] Alex Kendall and Yarin Gal. ((What uncertainties do we need in bayesian

deep learning for computer vision?)) In: Advances in neural information

processing systems. 2017, pp. 5574–5584.

[30] Alex Krizhevsky and Geo↵rey Hinton. Learning multiple layers of features

from tiny images. Tech. rep. Citeseer, 2009.

74



Bibliography

[31] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and

David M Blei. ((Automatic di↵erentiation variational inference)). In: The

Journal of Machine Learning Research 18.1 (2017), pp. 430–474.

[32] Suhas Kumar. ((The End of Moore’s Law and Reinventing Computing)). In:

High-Speed and Lower Power Technologies: Electronics and Photonics

(2018).

[33] Yann LeCun. ((Generalization and network design strategies)). In:

Connectionism in perspective (1989), pp. 143–155.

[34] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha↵ner.

((Gradient-based learning applied to document recognition)). In: Proceedings

of the IEEE 86.11 (1998), pp. 2278–2324.

[35] Yingzhen Li and Yarin Gal. ((Dropout inference in bayesian neural networks

with alpha-divergences)). In: arXiv preprint arXiv:1703.02914 (2017).

[36] David JC MacKay. ((A practical Bayesian framework for backpropagation

networks)). In: Neural computation 4.3 (1992), pp. 448–472.

[37] Rhiannon Michelmore, Marta Kwiatkowska, and Yarin Gal. ((Evaluating

Uncertainty Quantification in End-to-End Autonomous Driving Control)).

In: arXiv preprint arXiv:1811.06817 (2018).

[38] Gordon E Moore. ((Cramming more components onto integrated circuits,

Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp. 114

↵.)) In: IEEE Solid-State Circuits Society Newsletter 11.3 (2006), pp. 33–35.

[39] Gordon E Moore et al. ((Progress in digital integrated electronics)). In:

Electron Devices Meeting. Vol. 21. 1975, pp. 11–13.

[40] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,

2012.

[41] Radford M Neal. ((Bayesian Learning for Neural Networks)). In: (1996).

[42] Jorge Nocedal and Stephen J Wright. Numerical Optimization, Second

Edition. Springer New York, 2006.

75



Bibliography

[43] Antony O’Hagan and Jon Forster. ((The advanced theory of statistics, Vol.

2B: Bayesian inference)). In: London, UK: Arnold (2004).

[44] Fredrik Olsson. ((A literature survey of active machine learning in the

context of natural language processing)). In: (2009).

[45] R Core Team. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing. Vienna, Austria, 2016. url:

https://www.R-project.org/.

[46] Rajesh Ranganath. ((Black Box Variational Inference: Scalable, Generic

Bayesian Computation and its Applications)). PhD thesis. Princeton

University, 2017.

[47] Rajesh Ranganath, Sean Gerrish, and David Blei. ((Black box variational

inference)). In: Artificial Intelligence and Statistics. 2014, pp. 814–822.

[48] Ambrish Rawat, Martin Wistuba, and Maria-Irina Nicolae. ((Adversarial

Phenomenon in the Eyes of Bayesian Deep Learning)). In: arXiv preprint

arXiv:1711.08244 (2017).

[49] Luis Rios, Nikolaos Sahinidis, et al. ((Derivative-free optimization: a review

of algorithms and comparison of software implementations)). In: Journal of

Global Optimization 56.3 (2013), pp. 1247–1293.

[50] Christian Robert. The Bayesian choice: from decision-theoretic foundations

to computational implementation. Springer Science & Business Media, 2007.

[51] Burr Settles. Active Learning Literature Survey. Computer Sciences

Technical Report 1648. University of Wisconsin–Madison, 2009.

[52] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,

Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,

Adrian Bolton, et al. ((Mastering the game of Go without human

knowledge)). In: Nature 550.7676 (2017), p. 354.

[53] Lewis Smith and Yarin Gal. ((Understanding Measures of Uncertainty for

Adversarial Example Detection)). In: arXiv preprint arXiv:1803.08533

(2018).

76



Bibliography

[54] Nitish Srivastava, Geo↵rey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. ((Dropout: a simple way to prevent neural networks

from overfitting)). In: The Journal of Machine Learning Research 15.1

(2014), pp. 1929–1958.

[55] Richard S Sutton, Andrew G Barto, Francis Bach, et al. Reinforcement

learning: An introduction. MIT press, 1998.

[56] Stephen J Wright. ((Coordinate descent algorithms)). In: Mathematical

Programming 151.1 (2015), pp. 3–34.

77


